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In this supplementary material, we first provide the
training details of our PoF3D in Sec. A. In Sec. B, we
describe the details of implementations of baselines. Sec. C
provides more qualitative results. Moreover, we show
the syntheses under steep angles. Sec. D discusses the
limitations as well as the potential future work of PoF3D.
Ethical considerations are also provided.

A. Training and Implementation Details
Training Details. Most of our training parameters are the
same as those in EG3D [1]. We reset the loss weight λ
for gradient penalty to 1.0, 5.0, 0.3 for FFHQ [5], Cats [8],
and Shapenet Cars [2], respectively. γ, the weight for pose
loss, is set to 2, 10, 2 for FFHQ, Cats, and Shapenet Cars.
All losses are used for training iteratively. For FFHQ and
Cats, models are trained on the NeRF resolution of 64× 64
and the image resolution of 256 × 256. While for models
on Shapenet Cars, the NeRF resolution is 64 × 64 and the
image resolution of 128× 128, following the setting in [1].
Models on FFHQ and Shapenet Cars are trained end-to-end
on 25000K images for around 6 days on 8 NVIDIA A100
GPUs. Due to the limited amount of data in Cats dataset,
we follow the setting in EG3D [1] to finetune the pretrained
model of FFHQ on Cats dataset for 600K images.
Additional Implementation Details. We would like to
illustrate more implementation details in addtion to details
in Sec.3.5. PoF3D is built upon EG3D [1], including
the triplane generator, decoder, volume rendering, super-
resolution module and dual discriminator. In the triplane
generator, we disable the pose conditioning and add a pose
learner. The pose learner consists of two linear layers with
hidden size 512 and a leaky ReLU in between. It takes in
a w-space code of size 512 and outputs camera poses of
dimension 2, an azimuth angle and an elevation angle. In
the dual discriminator, we add a pose predictor. The pose
predictor has the same structure as the pose learner except
that the hidden size is 4096 and the input is feature maps of
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resolution 4 in the discriminator.

B. Baselines
CAMPARI [6] is a 3D-aware image synthesis method that
models camera distribution during training. We use the
official implementation for all experiments. For FFHQ,
Cats and Shapenet Cars dataset, we keep the settings
identical to the provided configurations for CelebA, Cats
and Carla, but we allow the learning of azimuth and
elevation angle only. Following [6], the prior distribution
is set to Gaussian distribution N (0, 13.5◦) for azimuth and
elevation on FFHQ and Cats, and a uniform distribution
over the entire azimuth and elevation for Shapenet Cars.
Other camera parameters are fixed to the one learned in the
original settings. Besides, we follow the original setting
that the camera distribution will be fixed for later stages of
training on FFHQ.
EG3D [1] is also one of the state-of-the-art methods in 3D-
aware image synthesis, which leverages ground-truth cam-
era poses for training. We use the official implementation
for all experiments. For FFHQ dataset, since the checkpoint
for 256×256 has not been released yet, we use the provided
configuration to train on the NeRF resolution of 64 × 64
and image resolution of 256 × 256. For Cats dataset, we
make use of the pose annotations processed by [3]. Other
settings are identical to the original one for cat dataset, and
the model is trained on the NeRF resolution of 64× 64 and
image resolution of 256×256 as well. Moreover, we follow
[1] to finetune the model with the checkpoint of FFHQ
on Cats dataset rather than train the model from scratch.
We adopt the checkpoint of Shapenet Cars provided by the
authors for evaluation.
CAMPARI+EG3D is a combination of CAMPARI [6] and
EG3D [1], where the pose distribution learning network
in CAMPARI is merged into the framework of EG3D.
Concretely, in EG3D, we do not sample poses from the col-
lection of real poses for generation, but sample a pose from
a prior distribution and transform it into a proper one with a
network. The transformed pose is then used for rendering.
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https://github.com/autonomousvision/campari
https://github.com/NVlabs/eg3d


Figure S1. Untruncated samples on FFHQ [5]. For each generated identity, we show the underlying geometry under two views and
appearance under three views.

Figure S2. Synthesized samples on Cats [8] with truncation 0.7. For each generated cat, we show the underlying geometry under two
views and appearance under three views.

For real data, we still leverage the ground-truth poses for
conditioning. The training strategy and the initialization of
priors for pose learning in CAMPARI+EG3D follows those
in CAMPARI. Other parameters such as camera intrinsic
matrix are identical to those used in EG3D.

C. Additional Results and Analysis
C.1. Qualitative Results

We provide more qualitative results in Figs. S1 to S3.
A demo video, is also available to show the qualitative
comparison with baselines. Our results are on par with
those generated from EG3D [1] and much better than those
from CAMPARI [6].

C.2. Syntheses under Steep Angles

We synthesize images under steep camera poses on
FFHQ dataset [5] in Fig. S4. Since CAMPARI fails to learn

a proper pose distribution and generates sharp and bumpy
shapes as discussed in Sec. 4.2, it finds it hard to synthesize
reasonable images under larger rotation. EG3D leverages
ground-truth poses for training and is good at generating
images under extreme views. However, it tends to generate
extremely sharp noses. Ours, however, can synthesize
natural noses and high-quality images under steep angles
without using any pose prior.

C.3. Training Behavior

We show the trends of FID, depth error, pose error
and Jensen-Shannon divergence in Fig. S5 as training
progresses. Generally, the network learns fast at first and
slows down later. The learning of the data distribution is
slower than the other three aspects.

https://www.youtube.com/watch?v=nvlyAElC8eE


Figure S3. Synthesized samples on Shapenet Cars [2] with truncation 0.7. For each generated car, we show the underlying geometry
under two views and appearance under three views.
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Figure S4. Syntheses under steep angles. < X% denotes less than X percent of training cases are trained under that pose.
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Figure S5. Behavior as training progresses. Zoom in for details.

C.4. 3D Reconstruction using COLMAP

We render 128 views from a random code using the
same camera trajectory as [1], to reconstruct a point cloud
using COLMAP. As shown in Fig. S6, the dense point
cloud indicates the good multi-view consistency achieved
by PoF3D.

Input samples Reconstructed point clouds

Figure S6. 3D reconstruction using COLMAP.

C.5. Distribution Difference between G and D

Fig. S7 visualizes the distribution discrepancy of G and
D on FFHQ, where the pose error is 0.09. The reason for the
distribution discrepancy is that in GAN training, it is hard
to optimize to the optimal point. A sub-optimal solution
brings the difference on pose distributions in G and D, as
well as the non-zero FID. How to make G and D equivalent
is a long-standing problem.

Elevation Azimuth

Figure S7. Pose distributions in G and D trained on FFHQ.

C.6. Full analysis of Fig. 1

We provide the full analysis of baselines in Fig. 1 with
both smaller range of pose distribution and larger range
of pose distribution, showing how sensitive existing works
are to the pre-estimated pose prior. As shown in Fig. S8,
for π-GAN (top), with [-0.5, 0.5] (middle) as the optimal
prior, using [-0.3, 0.3] (left) and [-0.7, 0.7] (right) result
in (i) planar and noisy shape as well as (ii) the loss of
canonical space. Similarly, for CAMPARI (bottom), with

0.24 (middle) as the optimal pose std, using 0.12 (left) and
0.36 (right) harm the performance drastically.

D. Discussion

D.1. Limitations and Future Work

Though PoF3D generates high-quality images and de-
cent underlying shapes without pose priors, there are still
some artifacts on the geometry. For example, the eye
balls have concave underlying shapes, leading to incorrect
movement during rotation. We believe extra geometry
supervision shall be added on them to fix the problem.
Sometimes bumpy regions can be observed. We think with
larger batch size, the pose distribution can be learnt more
accurately and thus leads to more decent shapes. Texture
sticking effect is also noticed during rotation, which might
be mitigated by replacing the StyleGAN2 backbone with
StyleGAN3 [4].

Despite the well-captured pose distribution, PoF3D
sometimes confuses the front with the rear of the car. The
reason is that the front and the rear of cars look similar
to each other in Shapenet Cars [2], a synthetic dataset. A
more powerful pose predictor should be introduced into the
discriminator to improve the ability of judging the front and
the rear of cars, which we leave for future work.

We do not model the foreground and the background
separately, and thus the background is close to the fore-
ground objects from time to time. Techniques, such as
NeRF++ [7], can be integrated into our framework to model
the foreground and background independently, which is
also a potential future direction to be explored.

D.2. Ethical Considerations

PoF3D can benefit vision and graphics applications, such
as gaming and content creation. However, it also poses
a threat because generative models can be misused for
DeepFake-related applications, e.g., human face editing and
talking head generation. We hope that DeepFake detection
algorithms can be developed to avoid such misuse. In
addition, verification cues, such as forensics, offer another
solution to mitigate the problem.



(a) pi-GAN: smaller range

(d) CAMPARI: smaller range

(b) pi-GAN: good pose distribution (c) pi-GAN: larger range

(e) CAMPARI: good pose initialization (f) CAMPARI: larger range

Figure S8. Results of different pose priors. FID scores of (a) to (f) are 12, 17, 13, 36, 28, and 26.
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