
Supplementary Material for
“ Make Landscape Flatter in Differentially Private Federated Learning ”

A. More Implementation Detail
A.1. Dataset

EMNIST [10] is a 62-class image classification dataset. In this paper, we use 20% of the dataset, which includes 88,800
training samples and 14,800 validation examples. Both CIFAR-10 and CIFAR-100 [28] have 60,000 images. In addition,
these images are divided into 50,000 training samples and 10,000 validation examples. CIFAR-100 has finer labeling, with
100 unique labels, in comparison to CIFAR-10, having 10 unique labels. Furthermore, we divide these datasets to each client
based on Dirichlet allocation over 500 clients by default.

A.2. Configuration

For the EMNIST dataset, we set the mini-batch size to 32 and train with a simple CNN model, which includes two
convolutional layers with 5×5 kernels, max pooling, followed by a 512-unit dense layer. For CIFAR-10 and CIFAR-100
datasets, we set the mini-batch size to 50 and train with ResNet-18 [18] architecture. For each algorithm and each dataset,
the learning rate is set via grid search on the set {10−0.5, 10−1, 10−1.5, 10−2}. The weight perturbation ratio ρ is set via grid
search on the set {0.01, 0.1, 0.3, 0.5, 0.7, 1.0}. For all methods using the sparsification technique, the sparsity ratio is set to
p = 0.4.

B. Additional Experiment on CIFAR-100
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Figure 5. The averaged testing accuracy on CIFAR-100 dataset under symmetric noise for all compared methods.

Table 4. Averaged training and testing accuracy (%) on CIFAR-100 in both IID and Non-IID settings under symmetric noise for all
compared methods. Note that the performance of the CIFAR-100 dataset is relatively poor across all algorithms due to the more severe
impact of DP in complex tasks.

Algorithm Dirichlet 0.3 Dirichlet 0.6 IID
Train Validation Train Validation Train Validation

DP-FedAvg 91.14±0.16 16.10±0.71 92.33±0.08 15.92±0.39 94.01±0.10 17.47±0.47
Fed-SMP-randk 90.70±0.01 17.25±0.16 92.28±0.32 17.50±0.19 94.31±0.02 17.68±0.44
Fed-SMP-topk 92.58±0.24 18.58±0.25 93.51±0.11 18.07±0.09 95.06±0.05 19.09±0.56

DP-FedAvg-blur 91.27±0.01 17.03±0.09 92.33±0.03 17.92±0.01 94.01±0.04 18.47±0.02
DP-FedAvg-blurs 92.98±0.24 18.98±0.25 94.01±0.11 18.27±0.19 95.46±0.05 19.59±0.06

DP-FedSAM 82.19±0.01 18.88±0.31 85.47±0.13 19.09±0.15 87.12±0.37 20.64±0.48
DP-FedSAM-topk 84.49±0.24 20.85±0.63 88.23±0.23 21.24±0.69 89.86±0.21 22.30±0.05
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(a) Loss landscape (b) Loss surface contour

Figure 6. Loss landscape and surface contour of DP-FedSAM. Compared with DP-FedAvg in the left of Figure 1 (a) and (b) with the same
setting, DP-FedSAM has a flatter landscape with both better generalization ability (flat minima, see Figure 6 (a)) and weight perturbation
robustness (see Figure 6 (b)).

B.1. Performance with Compared Baselines

In Table 4 and Figure 5, we evaluate DP-FedSAM and DP-FedSAM-topk on CIFAR-100 dataset in both settings com-
pared with all baselines from DP-FedAvg to DP-FedAvg-blurs. From all these results, it is clearly seen that our proposed
algorithms outperform other baselines under symmetric noise both on accuracy and generalization perspectives. It means
that we significantly improve the performance and generate a better trade-off between performance and privacy in DPFL.
For instance, in the IID setting, the averaged testing accuracy is 20.64% in DP-FedSAM, where the accuracy gain is 3.17%
compared with DP-FedAvg. And the average testing accuracy is 22.30% in DP-FedSAM-topk, where the accuracy gain is
3.21% compared with Fed-SMP-topk. That means our algorithms significantly mitigate the performance degradation issue
caused by DP.

B.2. Impact of Non-IID levels

Under different participation cases as shown in Table 4, we further prove the robust generalization of the proposed al-
gorithms. Heterogeneous data distribution of local clients is set to various participation levels from IID, Dirichlet 0.6, and
Dirichlet 0.3, which makes the training of the global model more difficult. For instance, compared with DP-FedAvg on
CIFAR-100, the test accuracy gain in DP-FedSAM is {2.78%, 3.17%, 3.17%}. Meanwhile, the test accuracy gain in DP-
FedSAM-topk is {2.27%, 3.17%, 3.21%} compared with Fed-SMP-topk. These observations confirm that our algorithms
are more robust than baselines in various degrees of heterogeneous data.

C. More details on Discussion for DP with SAM in FL
Loss landscape and contour. To visualize the sharpness of the flat minima and observe robustness to DP noise obtained
by DP-FedSAM, we show the loss landscape and surface contour following by the plotting method [30] in Figure 6. It is
clear that DP-FedSAM has flatter minima and better robustness to DP noise than DP-FedAvg in the left of Figure 1 (a) and
(b), respectively. It indicates that our proposed algorithm achieves better generalization and makes the training process more
adaptive to the DPFL setting.

D. Discussion for DP Guarantee in DP-FedSAM with Sparsification
Sparsification is a very common method when considering privacy protection to introduce a large amount of random noise

in FL [9, 20, 22]. It retains only the larger weight part of each layer of the local model with a sparsity ratio of k/d (d is the
weight scale), and the rest are sparse. The advantage is that the amount of random noise can be reduced (no noise needs to be
added to the sparse weight position), so the performance can be improved, which has been thoroughly verified in [9,20,22]. In
our methods, SAM needs to perform two gradient calculations and sparsification may lead to some performance degradation
because the model is compressed and some information may be lost.

Existing work [22] has verified SGD and top-k sparsification satisfying the Renyi DP. SAM optimizer only adds perturba-
tion on the basis of SGD and affects the model during training. And both SAM and top k sparsification are performed before



the DP process, thereby satisfying the Renyi DP.

E. Main Proof
E.1. Preliminary Lemmas

Lemma 2. (Lemma B.1, [41]) Under Assumptions 1-2, the updates for any learning rate satisfying η ≤ 1
4KL have the drift

due to δi,k − δ:
1

M

∑
i

E[∥δi,k − δ∥2] ≤ 2K2L2η2ρ2.

Where

δ = ρ
∇f(wt)

∥∇f(wt)∥
, δi,k = ρ

∇Fi(w
t,k, ξi)

∥∇Fi(wt,k, ξi)∥
.

Lemma 3. (lemma B.2, [41]) Under above assumptions, the updates for any learning rate satisfying ηl ≤ 1
10KL have the

drift due to wt,k(i)−wt:

1

M

∑
i

E[∥wt,k(i)−wt∥2] ≤ 5Kη2
(
2L2ρ2σ2

l + 6K(3σ2
g + 6L2ρ2) + 6K∥∇f(wt)∥2

)
+ 24K3η4L4ρ2.

Lemma 4. The two model parameters conducted by two adjacent datasets which differ only one sample from client i in the
communication round t,

K−1∑
k=0

∥yt,k(i)− xt,k(i)∥22 ≤ 2Kmax ∥∆t
i(y)−∆t

i(x)∥22.

Proof. Recall the local update from client i is
∑K−1

k=0 wt,k(i) =
∑K−1

k=0 wt,k−1(i) + ∆t
i, (the initial value is assumed as

wt,−1 = wt,0 = wt). Then,

K−1∑
k=0

∥yt,k(i)− xt,k(i)∥22 ≤ 2

K−1∑
k=0

∥yt,k−1(i)− xt,k−1(i)∥22

+ 2∥∆t
i(y)−∆t

i(x)∥22.

The recursion from τ = 0 to k yields

K−1∑
k=0

∥yt,k(i)− xt,k(i)∥22
a)

≤ 2Kmax ∥∆t
i(y)−∆t

i(x)∥22.

Where a) uses the initial value wt(i) = xt,0(i) = yt,0(i) and 0 < k ≤ K.

Lemma 5. Under assumption 1 and 3, the average of local update after the clipping operation from selected clients is

E∥ 1

m

∑
i∈Wt

∆̃t
i∥2 ≤ 3Kη2(L2ρ2 +B2)

Proof.

E∥ 1

m

∑
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∆̃t
i∥2 ≤ E∥ 1

m
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ηg̃t,k(i) · αt
i∥2 ≤ η2

m

∑
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+∇Fi(w
t,k(i); ξi)−∇Fi(w

t(i)) +∇Fi(w
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a)

≤ 3Kη2(L2ρ2 +B2),

where a) uses assumption 1 and 3 and

αt
i := min

(
1,

C

η∥
∑K−1

k=0 g̃t,k(i)∥

)
.



E.2. Proof of Sensitivity Analysis

Proof of Theorem 1. Recall that the local update before clipping and adding noise on client i is ∆t
i = wt,K(i) − wt,0(i).

Then,

ES2
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i
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1− 2η2L2K

(16)

where a) and b) uses lemma 4 and 2, respectively.
When the local adaptive learning rate satisfies η = O(1/L

√
KT ) and the perturbation amplitude ρ proportional to the

learning rate, e.g., ρ = O( 1√
T
), we have

ES2
∆t

i
≤ O

(
1

T 2

)
. (17)

For comparison, we also present the expected squared sensitivity of local update with SGD in DPFL as follows. It is
clearly seen that the upper bound in ES2

∆t
i,SAM is tighter than that in ES2

∆t
i,SGD.

Proof of sensitivity with SGD in FL..

ES2
∆t

i,SGD = maxE∥∆t
i(x)−∆t

i(y)∥22 = η2E
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l K
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.

(18)



Where a) and b) uses assumptions 1-2 and lemma 4, respectively. Thus ES2
∆t

i,SGD ≤ O(
σ2
l

KL2T ) when η = O(1/L
√
KT ).

E.3. Proof of Convergence Analysis

Proof of Theorem 3. We define the following notations for convenience:

∆̃t
i = −η

K−1∑
k=0

g̃t,k(i) · αt
i;

∆t
i = −η

K−1∑
k=0

g̃t,k(i) · αt,

where

αt
i := min

(
1,

C

η∥
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)
,

αt :=
1

M

M∑
i=1

αt
i,
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1

M
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i=1

|αt
i − αt|.

The Lipschitz continuity of ∇f :
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≤ Ef(wt) + E
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〉
+ E

L

2
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m
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〉
+

L

2
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∥∥∥ 1

m
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= Ef(wt) +
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1

m
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i
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︸ ︷︷ ︸

I
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L

2
E
〈
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∆̃t
i∥2
〉

︸ ︷︷ ︸
II

+
Lσ2C2d

2m2
,

(19)

where d represents dimension of wt,k
i and the mean of noise zti is zero. Then, we analyze I and II, respectively.

For I, we have 〈
∇f(wt),E

1

m

∑
i∈Wt

∆̃t
i

〉
=
〈
∇f(wt),E

1

M

M∑
i=1

∆̃t
i −∆

t

i

〉
+
〈
∇f(wt),E

1

M

M∑
i=1

∆
t

i

〉
. (20)

Then we bound the two terms in the above equality, respectively. For the first term, we have

E
〈
∇f(wt),E

1

M

M∑
i=1

∆̃t
i −∆

t

i

〉
≤ E

〈
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M
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≤ ηK

M
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E|αt
i − αt|

〈
∇Fi(w
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〉

a)
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M
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(
− 1

2
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1

2
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1

2
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(21)



where α̃t = 1
M

∑M
i=1 |αt

i − αt|, a) uses ⟨a, b⟩ = − 1
2∥a∥

2 − 1
2∥b∥

2 + 1
2∥a− b∥2 and b) bases on assumption 1,3.

For the second term, we have

〈
∇f(wt),E

1

M

M∑
i=1

∆
t

i

〉
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≤ −αtηK

2
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αtM
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III

,
(22)

where a) uses ⟨a, b⟩ = − 1
2∥a∥

2 − 1
2∥b∥

2 + 1
2∥a− b∥2 and 0 < η < 1. Next, we bound III as follows:

III = KE
∥∥∥∇f(wt) +

1

MK

M∑
i=1

K−1∑
k=0

∇ηFi(w
t,k + δ; ξi)

∥∥∥2
≤ 1

M

M∑
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K−1∑
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E
∥∥∥η(Fi(w

t,k + δ; ξi)−∇Fi(w
t,k; ξi)) + η(∇Fi(w

t,k; ξi)−∇Fi(w
t)) + (1 + η)∇Fi(w

t)
∥∥∥2

a)

≤ 3Kη2L2
(
ρ2 + E∥wt,k −wt∥2 + 2B2

)
b)

≤ 3Kη2L2
[
ρ2 + 5Kη2

(
2L2ρ2σ2
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)
+ 24K3η4L4ρ2 +B2

]
,

(23)

where 0 < η < 1, a) and b uses assumption 1, 3 and lemma 3, respectively.
For II, we uses lemma 5. Then, combining Eq. 12-16, we have

Ef(wt+1) ≤ Ef(wt) + ηα̃tK(
1

2
L2ρ2 −B2)− αtηK

2
∥∇f(wt)∥2 − ηαt
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∥∥∥ 1
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t
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3αtη2L2K

2
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ρ2 + 5Kη2
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l + 6K(3σ2
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)
+ 24K3η4L4ρ2 +B2

]
+

3η2KL(L2ρ2 +B2)

2
+

Lσ2C2d

2m2
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When η ≤ 1
3
√
KL

, the inequality is

Ef(wt+1) ≤ Ef(wt)− αtηK

2
E∥∇f(wt)∥2 + α̃tηKL2ρ2

2
+

3αtη2KL2ρ2
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)
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2m2
.

(25)

Sum over t from 1 to T , we have

1

T

T∑
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E
[
αt∥f(wt)∥2
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(26)

Assume the local adaptive learning rate satisfies η = O(1/L
√
KT ), both 1

T

∑T
t=1 α̃

t and 1
T

∑T
t=1 α

t are two important
parameters for measuring the impact of clipping. Meanwhile, both 1

T

∑T
t=1 α̃

t and 1
T

∑T
t=1 α

t are also bounded by 1. Then,



our result is
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√
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.

(27)

Assume the perturbation amplitude ρ proportional to the learning rate, e.g., ρ = O( 1√
T
), we have

1

T

T∑
t=1

E
[
αt
∥∥∇f

(
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√
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√
K
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