
Supplementary Material:

Matching Is Not Enough: A Two-Stage Framework
for Category-Agnostic Pose Estimation

This supplementary material includes the following five parts.

Part 1 presents more implementation details, including network architecture and the training recipe (in
main paper, Sec. 4.1, line 559).
Part 2 presents the comparison with the semantic correspondence approaches.

Part 3 presents more qualitative results (Fig. 5 in main paper).

Part 4 shows more visualizations of the attention maps (Fig. 7 in the main paper).

Part 5 includes the visualizations of the similarity maps and the similarity-aware position proposals.
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Part 1: Implementation Details on Network Architecture and Training Recipe

Network architecture. Here, we specify more details on network architecture. For all the encoder and
the decoder layers, the embedding dimension is set to 256. The raw feature maps with 2048 channels
from the backbone are first compressed to 256 channels with a 1× 1 convolution. The number of heads
for all the self- and the cross-attention layers are set to eight. The detailed architecture for the feed-
forward network and the offset prediction head (in line 483 of the main paper) are illustrated in Fig. A1.
Note that the overall design of the encoder and decoder has been illustrated in Fig. 3 and Fig. 4 of the
main paper.

For the similarity-aware proposal generator, we use the same configuration as in BMNet [7]. The
detailed architecture is illustrated in Fig. A2.
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Figure A1. Architecture of the feed-forward network
and the offset prediction head.
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Figure A2. Architecture of the similarity-aware proposal
generator.

Training recipe. We use pytorch [6] and MMPose [4] framework to develop the method. We set
the dropout rate of attention layers and feed-forward networks to be 0.1 following DETR [1]. We use a
linear warm-up strategy for 1, 000 iterations. The warm-up ratio is set to be 0.001.

To generate the keypoint heatmaps, we set the variance of the Gaussian kernel to 2.0. Note that, for
the support keypoints, the heatmaps are used as the soft masks to obtain the support keypoint features
(Sec. 3.2 in the main paper). Meanwhile, the heatmaps for keypoints in the query images are used as the
ground truth for the heatmap loss (see Eq. (5) in the main paper).

Minor design choice. Here we ablate some minor design choices, including hyper-parameters and
parameter sharing. For hyper-parameters, we analyze the impact of different λh, i.e., the weight for
heatmap loss in Table A1. We test the PCK under 1-shot setting on MP-100 split1. The results show
that 2.0 is an optimal choice, and the impact of λh is insignificant. The other hyper-parameters are not
further fine-tuned.
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We also notice that POMNet [9] adopts separated backbones for the support and query images, while
the proposed CapeFormer adopts a shared one. The offset prediction head can also be shared across
the decoder layers. We compare different parameter-sharing settings in Table A2. Although using
separated backbones, as in POMNet, can increase the performance slightly, we adopt a shared backbone
considering the efficiency.

Table A1. The impact of different heatmap loss weights
(λh).

λh 1 2 4 8 10

PCK 89.36 89.45 89.26 89.03 88.58

Table A2. The impact of parameter sharing for backbone and
offset prediction head.

Backbone Offset Head PCK

Parameter Sharing
✓ × 89.45
× × 89.74
✓ ✓ 89.08
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Part 2: Comparison with Semantic Correspondence Here we show the comparison between CAPE
and the semantic correspondence models [3, 5], and then discuss their differences. As mentioned in the
main paper, SC can naturally conduct CAPE. However, we find that directly applying SC models is not
an optimal choice for CAPE. As shown in Table A3 (CATs++ [2] is currently one of the best practices on
SC), both the pre-trained and the fine-tuned CATs++ (denoted by *) fall behind POMNet [9] and Cape-
Former in terms of accuracy and efficiency, but outperform the metric learning baseline ProtoNet [8].
We find the fine-tuned CATs++ hard to converge during training, thus failing to achieve better results.

Table A3. Quantitative comparison with the semantic correspondence models. * denotes that the model is fine-tuned on
MP-100 dataset.

Method ProtoNet POMNet CapeFormer CATs++ CATs++*
PCK 46.05 84.23 89.45 66.76 59.18

GFLOPs – 38.01 23.68 36.23 36.23

Then we discuss the differences, which are three folds: task, methodology, and data bias. For task,
SC aims to predict a dense correspondence field for every pixel in the source (support) image. The
core of this process is to compute a correlation map with the size of hw × hw. In contrast, CAPE only
computes similarity maps for input support keypoints. Hence, directly using SC is inefficient.

In terms of methodology, SC researchers find coarse correlation maps unreliable and noisy due to
similar appearance and repetitive patterns. Hence, similar to our two-stage design, post-processing
techniques are designed for correlation results. Unfortunately, most of these techniques in SC models
can not be adapted to CAPE as they heavily rely on the full-size hw × hw correlation map, such as the
commonly-used geometry consistency constraints.

Another difference can be the bias on the training data, most training data for SC models is rigid
objects, e.g., aeroplanes, faces, or bicycles. For CAPE, one needs to consider non-rigid deformation and
occlusions.
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Part 3: Qualitative Results

More qualitative results are shown in Fig. A3 and Fig. A4. Note that here we also add the qualitative
comparison with the previous best method POMNet [9].

Support POMNet CapeFormerOne-StageGT

Figure A3. More qualitative results #1. One-stage removes the decoder in the proposed CapeFormer.
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Support POMNet CapeFormerOne-StageGT

Figure A4. More qualitative results #2. One-stage removes the decoder in the proposed CapeFormer.
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Part 4: Attention Visualization

More visualizations of the encoder attention maps. We visualize more attention maps for the query-
support joint refine encoder in Fig. A5. We only visualize the support-to-query attention of the last
encoder layer. The encoder attention indicates which location in the query image the support keypoints
will attend to during information fusion.

Support Image Encoder Attention (last layer)

Figure A5. Visualizations of the encoder attention map. The left column shows the support image with support keypoints.
The other columns represent the attention maps for different support keypoints. The support keypoint for each attention map
is marked in the attention maps, whose color is identical to the corresponding keypoints in the support images.
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More visualizations for the decoder attention maps. More visualizations of the cross-attention in the
last proposal refine decoder layer are shown in Fig. A6. The attention shows which features will be
extracted for each support keypoint during position update.

Decoder Visualization

Support Image Decoder Attention (last layer)

Figure A6. Visualizations of the decoder attention map. The left column shows the support image with support keypoints.
The other columns represent the attention maps for different support keypoints. The support keypoint for each attention map
is marked in the attention visualizations, whose color is identical to the corresponding keypoints in the support images.

8



Part 5: Visualizations of Similarity Map and Similarity-Aware Proposals

We visualize the similarity maps and similarity-aware proposals in Fig. A7.

Support Image Similarity Map

Figure A7. Visualizations of similarity maps and similarity-aware proposals. The left column shows the support images
with support keypoints. The other columns visualize the similarity maps for different support keypoints. The keypoints are
marked on the similarity maps, whose colors are identical to the corresponding keypoints in the support images. We mark
the ground truth annotations with red points and the final predictions with orange points.
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