
A. Supplementary Material
A.1. Network Architecture in Feature Pyramid

From Transformer to CNN. To be self-contained, we
analyze the impact of module design on the detector. For
comparison, we build two baseline models: a convolu-
tional baseline and a Transformer baseline. Firstly, we build
the convolution baseline where the convolutional module is
adopted from the previous one-stage detector [21, 49]. Sec-
ondly, the previous state-of-the-art detector [49] with the lo-
cal window self-attention [4] is chosen as the Transformer
baseline. Then, to analyze the importance of two common
components: self-attention and normalization, in the Trans-
former [41] macrostructure, we provide three variants of the
convolutional-based structure: SA-to-CNN, LN-to-GN and
LN-GN-Mix, as Fig. 7 shown, and validate their perfor-
mance on THUMOS14.

Results. From the Tab. 9, we can see there is a large
performance gap between the Transformer baseline and the
CNN baseline (about 8.1% in average mAP), demonstrating
that the Transformer holds a large advantage for TAD tasks.
Then, we conduct the ablation study with the three variants
with normal regression head and Trident-head, respectively.

We first simply replace the local self-attention with a
1D convolutional layer which has the same receptive field
with [49] (e.g. kernel size is 19). This change brings a dra-
matic performance increase in average mAP compared with
the CNN baseline (about 6.2%) but is still behind the Trans-
former baseline by about 1.9%. Next, we conduct experi-
ments with different normalization layers (i.e. Layer Nor-
malization (LN) [3] and Group Normalization (GN) [43])
and we find that the hybrid structure of LN and GN (LN-
GN-Mix) shows better performance comparing to the origi-
nal form of the Transformer (65.7 versus 64.9). By combin-
ing with the Trident-head, the LN-GN-Mix version achieves
66.0% in average mAP, which demonstrates the possibil-
ity of efficient convolutional modeling. These empirical
results further motivate us to improve the feature pyramid
with SGP layer (see Sec 3.2 of the main test for more de-
tails).

A.2. The rank loss problem in Transformer.

In [13], the authors discuss how the pure self-attention
operation causes the input feature to converge to a rank-1
matrix at a double exponential rate, while MLP and residual
connections can only partially slow down this convergence.
This phenomenon is disastrous for TAD tasks, as the video
feature sequences extracted by pre-trained action recogni-
tion networks are often highly similar (see Section 1), which
further aggravates the rank loss problem and makes the fea-
tures at each instant indistinguishable, resulting in inaccu-
rate detection of action.
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Figure 7. Two baseline models and three different variants of the
convolutional-based structure.

Table 9. The results of different variants on THUMOS14. *: with
Trident-head.

Method 0.3 0.4 0.5 0.6 0.7 Avg.

CNN Baseline 73.7 68.8 61.4 51.6 38.0 58.7
Transformer Baseline 82.1 77.8 71.0 59.4 43.9 66.8

SA-to-CNN 80.4 76.4 67.5 57.5 42.9 64.9
LN-to-GN 80.0 76.3 68.0 57.2 42.3 64.8

LN-GN-Mix 80.8 77.2 68.8 58.1 43.6 65.7

SA-to-CNN* 81.2 77.3 68.7 58.0 43.5 65.7
LN-to-GN* 80.7 76.9 69.1 58.0 42.2 65.4

LN-GN-Mix* 81.6 77.7 69.5 58.2 42.9 66.0

We posit that the core reason for this issue lies in the soft-
max function used in self-attention. Namely, the probability
matrix (i.e. softmax(QKT )) is non-negative and the sum of
each row is 1, indicating the outputs of SA are convex com-
bination for the value feature V . We will demonstrate that
the largest angle between any two features in V ′ = SA(V )
is always less than or equal to the largest angle between fea-
tures in V .

Definition A.2.1 (Convex Combination) Given a set of
points S = {x1, x2..., xn}, a convex combination is a point
of the form

∑
n anxn, where an ≥ 0 and

∑
n an = 1.

Definition A.2.2 (Convex Hull) The convex hull H of a
given set of points S is identical to the set of all their convex
combinations. A Convex hull is a convex set.



Property A.2.2.1 (Extreme point) An extreme point p is a
point in the set that does not lie on any open line segment
between any other two points of the same set. For a point
set S and its convex hull H , we have p ∈ S.

Lemma A.2.3 Consider the case of a convex hull that does
not contain the origin. Let a, b ∈ Rn and let S be the con-
vex hull formed by them. Then, the angle between any two
position vectors of points in S is less than or equal to the
angle between the position vectors of the extreme points a⃗
and b⃗.

Proof A.2.3.1 Consider the objective function

f(x) = cos (x⃗, y⃗) =
⟨x⃗, y⃗⟩

∥x⃗∥2 ∥y⃗∥2
,

where x⃗, y⃗ are the position vectors of two points x1, x2
within the convex hull S (a line segment with extreme points
a and b). The angle between two vectors is invariant with
respect to the magnitude of the vectors, thus, for simplicity,
we define x⃗ = a⃗ + x⃗b, y⃗ = a⃗ + y⃗b, where x, y ∈ [0,+∞).
Moreover, we have

f ′(x) = ∥x⃗∥−3
2 ∥y⃗∥−1

2 ×

[⟨⃗b, y⃗⟩||⃗a+ x⃗b||22 − (||⃗b||22x+ ⟨⃗a, b⃗⟩)⟨⃗a+ x⃗b, y⃗⟩]

We consider

g(x) =⟨⃗b, y⃗⟩||⃗a+ x⃗b||22 − (||⃗b||22x+ ⟨⃗a, b⃗⟩)⟨⃗a+ x⃗b, y⃗⟩

=⟨⃗b, y⃗⟩(||⃗a||22 + 2⟨⃗a, b⃗⟩x+ ||⃗b||22x2)− [⟨⃗b, y⃗⟩||b||22x2

+ (⟨⃗a, b⃗⟩||b||22 + ⟨⃗a, b⃗⟩⟨⃗b, y⃗⟩)x+ ⟨⃗a, y⃗⟩⟨⃗a, b⃗⟩]

=(⟨⃗a, b⃗⟩⟨⃗b, y⃗⟩ − ⟨⃗a, y⃗⟩⟨⃗b, b⃗⟩)x+ ⟨⃗a, a⃗⟩⟨⃗b, y⃗⟩ − ⟨⃗a, y⃗⟩⟨⃗a, b⃗⟩.

Substituting y⃗ = a⃗ + y⃗b into the above equation, we have

g(x) =(⟨⃗a, b⃗⟩⟨⃗b, a⃗+ y⃗b⟩ − ⟨⃗a, a⃗+ y⃗b⟩⟨⃗b, b⃗⟩)x+

⟨⃗a, a⃗⟩⟨⃗b, a⃗+ y⃗b⟩ − ⟨⃗a, a⃗+ y⃗b⟩⟨⃗a, b⃗⟩

=[⟨⃗a, b⃗⟩(⟨⃗a, b⃗⟩+ y⟨⃗b, b⃗⟩)− (⟨⃗a, a⃗⟩+ y⟨⃗a, b⃗⟩)⟨⃗b, b⃗⟩]x+

[⟨⃗a, a⃗⟩(⟨⃗a, b⃗⟩+ y⟨⃗b, b⃗⟩)− (⟨⃗a, a⃗⟩+ y⟨⃗a, b⃗⟩)⟨⃗a, b⃗⟩]

=(||⟨⃗a, b⃗⟩||22 − ||⃗a||22||⃗b||22)x+ (||⃗a||22||⃗b||22 − ||⟨⃗a, b⃗⟩||22)y

=(||⟨⃗a, b⃗⟩||22 − ||⃗a||22||⃗b||22)(x− y).

According to the Cauchy-Schwarz inequality, we can obtain

||⟨⃗a, b⃗⟩||22 − ||⃗a||22||⃗b||22 ≤ 0

Then, we have

g(x)


> 0 x < y

= 0 x = y

< 0 x > y.

thus, for any position vector y⃗, when x = 0 or x → ∞
(x⃗ = a⃗ or x⃗ = b⃗), the angle formed between y⃗ and x⃗ is
maximum.

Without loss of generality, given a specific y⃗, if its max-
imum vector x⃗ = a⃗, we can then set y⃗ to a⃗ and find its
maximum vector again, which yields

θ(x⃗, y⃗) ≤ θ(⃗a, y⃗) ≤ θ(⃗b, a⃗)

The proof is completed.

Theorem A.2.4 Consider the case of a convex hull that
does not contain the origin. Let X = {x1, x2, . . . , xk} be
a set of points and let S be its convex hull. Then, the max-
imum angle between the position vectors of any two points
in S is formed by the position vectors of two extreme points
of S.

Proof A.2.4.1 Assume that this case holds when k.
When k = 2, based on Lemma A.2.3, the maximum angle

is formed by the extreme points x⃗1 and x⃗2.
When k ≥ 3, we can sort the elements of X such that for

a point y in S, x⃗k maximizes the angle θ(y⃗, x⃗k). Besides,
the points x in S are of the form:

λ1x⃗1 + λ2x⃗2 + ...+ λkx⃗k

=(λ1 + ...+ λk−1)(
λ1x⃗1

λ1 + ...+ λk−1
+ ...+

λk−1 ⃗xk−1

λ1 + ...+ λk−1
)

+ λkx⃗k,

where ( λ1x⃗1

λ1+...+λn−1
+ ... + λk−1 ⃗xk−1

λ1+...+λk−1
) is a position vec-

tor of a point located within the convex hull induced by
{x1, x2, ..., xk−1}. Through Lemma A.2.3 and definition,
we can obtain

θ(x⃗, y⃗) ≤ θ(x⃗k, y⃗)

For any two points x and y in a convex hull S, by setting
y⃗ = x⃗k and using the above inequality twice, without loss
of generality, we can assume that the vector x⃗1 makes the
largest angle with x⃗k. Then, we can obtain

θ(x⃗, y⃗) ≤ θ(x⃗k, y⃗) ≤ θ(x⃗1, x⃗k)

By definition, θ(x⃗1, x⃗k) is no greater than the maximum
angle formed by any other two basis vectors.

The proof is completed.

Corollary A.2.5 When the convex hull of the input set V
does not contain the origin, the largest angle between any
two features after self-attention V ′ = SA(V ) is always less
than or equal to the largest angle between features in V .
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Figure 8. The sensitivity analysis of the detection results on THUMOS14. Where mAPN is the normalized mAP with the average number
N of ground truth segments per class [2].

Remark A.2.5.1 In the Temporal Action Detection (TAD)
task, the temporal feature sequences extracted by the pre-
trained video classification backbone often exhibit high sim-
ilarity and the pure Layer Normalization [3] projects the in-
put features onto the hyper-sphere in the high-dimensional
space. Consequently, the convex hull induced by these fea-
tures often does not encompass the origin. As a result,
self-attention operation causes the input features to become
more similar, reducing the distinction between temporal
features and hindering the performance of the TAD task.

A.3. Error Analysis

In this section, we analyse the detection results on THU-
MOS14 with the tool from [2], which analyze the results
in three main directions: the False Positive (FP), the False
Negative (FN) and the sensitivity of different length. For a
further explanation of the analysis, please refer to [2] for
more details.

Sensitivity analysis. As shown in Fig. 8 (Left), three
metrics are taken into consideration: coverage (the normal-
ized length of the instance by the duration of the video),
length (the actual length in seconds) and the number of in-
stances (in a video). The results are divided into several
length/number bins from extremely short (XS) to extremely
long (XL). We can see that our method’s performance is bal-
anced over most of the action length, except for extremely
long action instances which are significantly lower than the
overall value (the dashed line). That’s because extremely
long action instances contain more complicated informa-
tion, which deserves further exploration.

Analysis of the false positives. Fig. 9 shows a chart of the
percentage of different types of action instances in different
k −G numbers, where G is the number of the ground-truth
instances for each action category and the top k × G pre-
dicted instances are kept for visualization.

From the 1G column on left, we can see in the top G pre-
diction, the true positive instances account for about 80% (at
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Figure 9. The false positive profile. It counts the percentage of
several common types of detection error in different Top-K pre-
diction groups.
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Figure 10. The false negative profile. It counts the percentage of
miss-detection instances in different video lengths or videos with
different action instance densities.

IoU=0.5), which indicates that our method has the power
to estimate the right score of each instance. Moreover, on
right, we can see the impact of each type of error: the re-
gression error (i.e. localization error and background error,
the IoU between prediction and ground truth is much lower
than a threshold or equal to zero) is still the part that de-
serves the most attention.

Analysis of the false negatives. In this section, we analyze
the false negative (miss-detection) rate for our method. As
depicted in Fig. 10, only the extremely short and extremely
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Figure 11. A visualization of the detection result on the THUMOS14 test set.

long instances have a relatively higher FN rate (9.0% and
13.5%, respectively), which is consistent with intuition that
they are more difficult to detect. Note that for a video with
only one action instance (XS), TriDet can detect all of them
without any miss-detection (0.0 in # Intances), demonstrat-
ing our advantage for single-action localization.

A.4. Qualitative Analysis

In Fig. 11, we show the visualization of a detection result
on the THUMOS14 test set. It can be seen that our method
accurately predicts the start and end instant of the action.
Besides, we also visualize the predicted probability of the
boundary in the Trident-head, where only the bin around the
boundary has a relatively high probability while the others
are low and smooth, indicating that the Trident-head can
converge to a reasonable result.


