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This document contains supplementary material for our paper titled “Learning decorrelated representations effi-
ciently using Fast Fourier Transform” appearing in CVPR 2023. Numeric equation numbers, such as (1), (2), refer to
equations in the main paper. New equations in this document are prefixed with a section letter, as in (A.1), (B.2). The
same rules apply to the numbering of figures and tables.
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A Derivation of Eq. (8)
Let 𝑑-dimensional vectors x = [𝑥0 · · · 𝑥𝑑−1]T, y = [𝑦0 · · · 𝑦𝑑−1]T. We first show inv(x) ∗ y =

∑𝑑−1
𝑗=0 𝑥 𝑗 𝑦 (𝑖+ 𝑗 ) mod 𝑑 .

[inv(x) ∗ y]𝑖 =
𝑑−1∑︁
𝑗=0

[inv(x)] 𝑗 𝑦 (𝑖− 𝑗 ) mod 𝑑

=

𝑑−1∑︁
𝑗=0

𝑥 (𝑑− 𝑗 ) mod 𝑑 𝑦 (𝑖− 𝑗 ) mod 𝑑 ∵ [inv(x)] 𝑗 = 𝑥 (𝑑− 𝑗 ) mod 𝑑

=

𝑑−1∑︁
𝑗′=0

𝑥 𝑗′ 𝑦 (𝑖−(𝑑− 𝑗′ ) ) mod 𝑑 ∵ substituting 𝑗 ′ = (𝑑 − 𝑗) mod 𝑑

=

𝑑−1∑︁
𝑗′=0

𝑥 𝑗′ 𝑦 (𝑖+ 𝑗′ ) mod 𝑑 ∵ (𝑎 − 𝑑) mod 𝑑 = 𝑎 mod 𝑑

=

𝑑−1∑︁
𝑗=0

[
xyT]

𝑗 , (𝑖+ 𝑗 ) mod 𝑑
. ∵ renaming variable 𝑗 ′ → 𝑗

Setting x = a(𝑘 ) and y = b(𝑘 ) , we obtain Eq. (8) in Sec. 4.2. In the literature (e.g., [Pla03,Smi08]), inv(x) ∗ y is called
the circular correlation of x and y, and the above equation is usually presented as its definition.

B Regularizers Based on Sums of Feature Covariances
As mentioned in Sec. 4.5, if we substitute 𝑅sum for 𝑅off in the loss function of VICReg given in Eq. (3), we obtain
regularization based on the covariance matrices K(A),K(B) of individual views. The resulting regularizer for K(A)
is:

𝑅sum (K(A)) =
𝑑−1∑︁
𝑖=1

∥ [sumvec(K(A))]𝑖 ∥𝑞𝑞 , (B.1)

where hyperparameter 𝑞 ∈ {1, 2}. The regularizer for K(B) has the same form and is omitted.
𝑅sum (K(A)) can be efficiently computed by FFT, in a similar manner to 𝑅sum (C(A,B)). For brevity, assume

that set A is centered; i.e., all features have mean 0 in A. In this case, its covariance matrix is K(A) = (1/(𝑛 −
1))∑𝑛

𝑘=1 a(𝑘 )a(𝑘 )T.
Noting that F(inv(a(𝑘 ) ) = F(a(𝑘 ) ) and the convolution theorem F(x ∗ y) = F(x) ◦ F(y), we have

sumvec(K(A)) = 1
𝑛 − 1

𝑛∑︁
𝑘=1

inv(a(𝑘 ) ) ∗ a(𝑘 )

=
1

𝑛 − 1

𝑛∑︁
𝑘=1

inv(a(𝑘) )∗a(𝑘)︷                         ︸︸                         ︷
F−1

(
F(a(𝑘 ) ) ◦ F(a(𝑘 ) )

)
=

1
𝑛 − 1

F−1

(
𝑛∑︁

𝑘=1
F(a(𝑘 ) ) ◦ F(a(𝑘 ) )

)
, (B.2)

The grouping version is also straightforward. Partitioning K(A) into block submatrices of size 𝑏×𝑏, i.e., K(𝐴) = [K𝑖 𝑗 ]
(𝑖, 𝑗 = 1, . . . , ⌈𝑑/𝑏⌉), where K𝑖 𝑗 ∈ R𝑏×𝑏, and applying 𝑅

(𝑏)
sum defined in Eq. (13) to it, we obtain

𝑅
(𝑏)
sum (K(A)) =

⌈𝑑/𝑏⌉∑︁
𝑖=1

𝑏−1∑︁
ℓ=1

∥ [sumvec(K𝑖𝑖)]ℓ ∥𝑞𝑞 +
⌈𝑑/𝑏⌉∑︁
𝑖, 𝑗=1
𝑖≠ 𝑗

𝑏−1∑︁
ℓ=0

[sumvec(K𝑖 𝑗 )]ℓ
𝑞
𝑞
. (B.3)
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Table C.1. Complexity of loss computation. The space complexity includes 𝑂 (𝑛𝑑) memory needed to store input embeddings.
Grouping = 𝑏 indicates 𝑏 being the size of the group (i.e., block size).

Regularizer Grouping Time Space

Barlow Twins — 𝑂 (𝑛𝑑2 ) 𝑂 (𝑛𝑑 + 𝑑2 )
VICReg — 𝑂 (𝑛𝑑2 ) 𝑂 (𝑛𝑑 + 𝑑2 )
Proposed (𝑅sum) no 𝑂 (𝑛𝑑 log 𝑑) 𝑂 (𝑛𝑑)
Proposed (𝑅 (𝑏)

sum) 𝑏 𝑂 ( (𝑛𝑑2/𝑏) log 𝑏) 𝑂 (𝑛𝑑)

Table D.1. Loss functions and regularizers in the proposed method (with and without grouping), Barlow Twins, and VICReg.
Grouping = 𝑏 indicates 𝑏 being the size of the group (i.e., block size).

(a) Cross-correlation–regularization with Barlow Twins–style loss function 𝐿 =
∑

𝑖 (1 − [C(A, B) ]𝑖𝑖 )2 + _𝑅 (C(A, B) )

Method Grouping Regularizer function 𝑅

Barlow Twins — 𝑅off

Proposed no 𝑅sum

Proposed 𝑏 𝑅
(𝑏)
sum

(b) Covariance regularization with VICReg-style loss function
𝐿 = 𝛼

𝑛

∑
𝑖 ∥a(𝑖) − b(𝑖) ∥2

2 + `

𝑑
(𝑅var (K(A) ) + 𝑅var (K(B) ) ) + a

𝑑
(𝑅 (K(A) ) + 𝑅 (K(B) ) )

Method Grouping Regularizer function 𝑅

VICReg — 𝑅off

Proposed no 𝑅sum

Proposed 𝑏 𝑅
(𝑏)
sum

where block size 𝑏 is the hyperparameter that controls the granularity of the summary computation. When 𝑞 = 2 and
𝑏 = 𝑑, i.e., the block size is (𝑏/𝑑) × (𝑏/𝑑) = 1 × 1, the regularizer 𝑅 (𝑏)

sum (K(A)) reduces to 𝑅off (K(A)) of VICReg.

C Summary of Computational Complexity
Tab. C.1 summarizes the computational complexity of the regularizers discussed in this paper. As the table shows, the
proposed regularizers are faster and cheaper than the Barlow Twins and VICReg in terms of time and space complexity.

D Detailed Experimental Setups
All the experiments in Sec. 5 were conducted on commercial Linux servers with CUDA v11.6.2 and cuDNN v8.
We implemented our model using PyTorch v1.12.0 [PGM+19] and solo-learn v1.0.5 [TFN+22], a library of self-
supervised methods for visual representation learning built on top of PyTorch and PyTorch Lightning1 v1.6.4. We
also used NVIDIA DALI, a library for data loading and pre-processing to accelerate deep learning applications2.
For object detection, detectron2 [WKM+19] was used. To manage the experiments, we used Weights & Biases, a
machine learning platform for the tracking and visualization of experiments [Bie20]. As PyTorch v1.12.0 only provides
experimental support for half precision FFT3, we trained every model with 32-bit precision, including Barlow Twins
and VICReg.

D.1 Compared Methods
In each comparison, the proposed method and the two baselines, Barlow Twins and VICReg, used an identical network
architecture, with the exception of the training loss. The loss functions of the baselines are given by Eqs. (1) and (3),

1https://www.pytorchlightning.ai/
2https://github.com/NVIDIA/DALI
3https://pytorch.org/blog/pytorch-1.12-released/#beta-complex32-and-complex-convolutions-in-pytorch
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which are repeated below as Eqs. (D.1) and (D.2) for convenience. Let A = {a(𝑖) }𝑚
𝑖=1, B = {b(𝑖) }𝑚

𝑖=1 be the embeddings
of the two views, with 𝑖 = 1, . . . , 𝑚 indicating the original sample indices, K(A),K(B) ∈ R𝑑×𝑑 be their respective
covariance matrices, and C(A,B) ∈ R𝑑×𝑑 be the cross-correlation matrices between 𝐴 and 𝐵.

𝐿BT =

𝑑−1∑︁
𝑖=0

(1 − [C(A,B)]𝑖𝑖)2 + _𝑅off (C(A,B)), (D.1)

𝐿VIC =
𝛼

𝑛

𝑚∑︁
𝑖=1

∥a(𝑖) − b(𝑖) ∥2
2 +

`

𝑑
(𝑅var (K(A)) + 𝑅var (K(B))) + a

𝑑
(𝑅off (K(A)) + 𝑅off (K(B))) , (D.2)

where hyperparameters 𝛼, `, a, _ ≥ 0 determine the importance of individual terms, and the regularization functions
are given by

𝑅off (M) =
𝑑−1∑︁
𝑖=0

𝑑−1∑︁
𝑗=0
𝑗≠𝑖

[M]2
𝑖 𝑗 ,

𝑅var (M) =
𝑑−1∑︁
𝑖=0

max(0, 𝛾 −
√︁
[M]𝑖𝑖).

For the proposed method, we replace all occurrences of 𝑅off in Eqs. (D.1) and (D.2) with either 𝑅sum (Eq. (6)) or 𝑅 (𝑏)
sum

(Eq. (13)) depending on whether grouping is used. These functions are repeated below.

𝑅sum (M) =
𝑑−1∑︁
𝑖=1

∥ [sumvec(M)]𝑖 ∥𝑞𝑞 , (D.3)

𝑅
(𝑏)
sum (M) =

⌈𝑑/𝑏⌉∑︁
𝑖=1

𝑏−1∑︁
ℓ=1

∥ [sumvec(M𝑖𝑖)]ℓ ∥𝑞𝑞 +
⌈𝑑/𝑏⌉∑︁
𝑖, 𝑗=1
𝑖≠ 𝑗

𝑏−1∑︁
ℓ=0

∥ [sumvec(M𝑖 𝑗 )]ℓ ∥𝑞𝑞 , (D.4)

where M = [M𝑖 𝑗 ] is a block matrix with block elements M𝑖 𝑗 ∈ R𝑏×𝑏, 𝑖, 𝑗 = 1, . . . , ⌈𝑑/𝑏⌉.
Tab. D.1 summarizes the regularizers and loss functions for Barlow Twins, VICReg, and the proposed models.

D.2 Data Augmentation
Following the Barlow Twins paper [ZJM+21], we used non-symmetric parameters for Barlow Twins-style objectives.
For VICReg-style objectives in ImageNet-100 experiments, we used the symmetrized augmentation pipeline reported
in the VICReg paper [BPL22, Appendix C.1]. Following a comment in the VICReg GitHub repository4, we used the
non-symmetric augmentation parameters (the same parameters as in Barlow Twins) for ImageNet experiments.

D.3 Hyperparameters
ImageNet-100. For ImageNet-100 experiments, we followed the optimization procedure described in [TFN+22]. To
train models, stochastic gradient descent (SGD) was used with the LARS optimizer [YGG17] for 400 epochs. We used
linear warm-up with cosine annealing decay for the learning rate scheduler. The batch size was wet to 256 (per GPU
batch size is 32). The loss scaling value and the importance coefficients for the proposed regularizers (a in Eq. (3) and
_ in Eq. (1)) were sought by grid search. In addition to these parameters, we further tuned the block size and 𝑞 in our
regularizers (Eqs. (6) and (13)).

In linear evaluation, linear classifiers was optimized with SGD for 100 epochs. In training for ImageNet-100, we
used the hyperparameters provided by the solo-learn library.

Tab. D.2 summarizes the hyperparameters for ImageNet-100 experiments.

4https://github.com/facebookresearch/vicreg/issues/3
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Table D.2. The hyperparameters for ImageNet-100 experiments that were used for training models. The hyperparameters for
Barlow Twins and VICReg were set to the values reported by [TFN+22]. For the proposed methods, we found values by grid
search.

(a) Cross-correlation regularization with Barlow Twins–style loss function

Method Grouping Loss scale 𝑞 _

Barlow Twins — 0.1 — 0.0051
Proposed (Barlow Twins–style) no 0.125 2 2−10

Proposed (Barlow Twins–style) 𝑏 = 128 0.125 2 2−10

(b) Covariance regularization

Method Grouping Loss scale 𝑞 a

VICReg — — — 1.0
Proposed (VICReg-style) no 0.25 1 1.0
Proposed (VICReg-style) 𝑏 = 128 0.25 1 2.0

(c) All other hyperparameters were set to the values reported by [TFN+22].

Learning rate Weight decay Batch size Warmup epochs 𝛼 `

0.3 10−4 256 10 25.0 25.0

(d) Hyperparameters for linear evaluation on ImageNet-100.

Pretrained model Learning rate Steps for learning rate decay Weight decay Batch size

Barlow Twins / Proposed (Barlow Twins–style) 0.1 [60, 80] 0 256
VICReg / Proposed (VICReg-style) 0.3 [60, 80] 0 512

ImageNet. For ImageNet experiments, we followed the optimization procedure described in [ZJM+21,BPL22]. We
used SGD with the LARS optimizer for 1000 epochs and linear warmup with cosine annealing decay. We set the batch
size to 1024 (per GPU batch size is 128) and used a learning rate of 0.25 by reference to the Barlow Twins GitHub
repository5. We searched for _ and 𝑞 for the proposed regularizers by grid search.

In the linear evaluation on ImageNet, the linear head was trained for 100 epochs with SGD and cosine learning
rate decay. We tuned the learning rate and batch size for the proposed methods. For Barlow Twins and VICReg, the
learning rate and batch size are set to the values reported in the original papers [ZJM+21, BPL22].

In object detection, we trained a Faster R-CNN with a C-4 backbone for 24K iterations. The backbone is initialized
with the pretrained ResNet-50 backbone. Following [HFW+20,ZJM+21,BPL22], we set the batch size to 16 (per GPU
batch size is 2) and used a step learning rate decay (divided by 10 at 18K and 22K iterations) with a linear warmup
(slope of 0.333 for 1K iterations). We tuned the learning rate and the region proposal network loss weight for the
proposed methods.

Tab. D.3 summarizes the hyperparameters for ImageNet experiments.

D.4 Evaluation of Training Time and Memory Consumption
To discuss empirical complexity, we measured the elapsed time and peak GPU memory allocation over ten epochs.
We conducted three trials and reported the average time and memory allocation. To avoid communication overhead
between GPUs, we evaluated the results of single GPU training (not distributed data parallel training) unless otherwise
noted. The batch size was set to 32 for ImageNet-100 and 128 for ImageNet as in pretraining settings (per GPU
batch size is 32 and 128). The number of workers (the argument “num_workers” in the solo-learn library used for
implementation) is set to 32 for ImageNet-100 and 4 for ImageNet.

We used the Simple Profiler in PyTorch Lightning6 to measure training time. From the profiler output, the value

5https://github.com/facebookresearch/barlowtwins/issues/7
6https://pytorch-lightning.readthedocs.io/en/1.6.4/advanced/profiler.html#simple-profiler
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Table D.3. The hyperparameters for ImageNet experiments that were used for training models.

(a) Cross-correlation regularization

Method Grouping Loss scale 𝑞 _

Barlow Twins — 0.024 — 0.0051
Proposed (Barlow Twins–style) no 0.024 2 2−11

Proposed (Barlow Twins–style) 𝑏 = 128 0.024 2 2−11

(b) Covariance regularization

Method Grouping Loss scale 𝑞 𝛼 ` a

VICReg — — — 25.0 25.0 1.0
Proposed (VICReg-style) no — 1 2.5 2.5 0.1

(c) Hyperparameters for optimization.

Learning rate Weight decay Batch size Warmup epochs

0.25 10−6 1024 10

(d) Hyperparameters for linear evaluation on ImageNet.

Pretrained model Learning rate Learning rate decay Weight decay Batch size

Barlow Twins 0.3 cosine decay 10−6 256
VICReg 0.02 cosine decay 10−6 256
Proposed (Barlow Twins–style) 0.125 cosine decay 10−6 2048
Proposed (VICReg-style) 0.125 cosine decay 10−6 256

(e) Hyperparameters for object detection on VOC07+12.

Pretrained model Learning rate Region proposal network loss weigh

Proposed (Barlow Twins–style) 0.125 0.03125
Proposed (VICReg-style) 0.125 0.125

of the “Total time (s)” in the “run_training_epoch” line was extracted and plotted as the training time in Figs. 2, 3
and E.1 to E.4. We used a function in PyTorch7 to monitor memory occupied by tensors. The value of “Peak Usage”
in the “Allocated memory” line was used as the peak GPU memory allocation.

As regards the total training time in Tab. 4, we reported the runtime counted by WandB.8 As mentioned in the
footnote of Sec. 5.2, our experiment was performed on a commercial cloud platform that terminates a session after
three days. To finish training Barlow Twins and VICReg with 8 GPUs for 1000 epochs on ImageNet, we needed three
sessions, and the proposed model only two (see Tab. 4). The timing reported in Tab. 4 is the run time of these sessions
that includes the time for initialization at the beginning of each session. This initialization takes only 3–5 seconds at
each session and does not affect the trend observed in the table. Note that in addition to this initialization, data copy
takes about 15 minutes at the start of a session, but this has already been excluded from the timing in Tab. 4.

D.5 Computational Resources
We used a cloud computing platform for the experiments. In the main experiments, we trained models with eight
Nvidia A100-SXM4 GPUs on this platform. We used a single Nvidia A100 GPU to evaluate empirical complexity,
except where noted.

7https://pytorch.org/docs/stable/generated/torch.cuda.memory_summary.html
8We used the value of the “Runtime” in WandB.
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Table E.1. The accuracy with 𝑞 ∈ {1, 2} on ImageNet-100.

Model Grouping 𝑞 Top-1 Top-5

Proposed (Barlow Twins–style) no 1 75.94 94.28
2 79.94 94.76

𝑏 = 128 1 76.44 94.46
2 81.02 95.24

Proposed (VICReg-style) no 1 79.20 94.96
2 57.98 84.56

𝑏 = 128 1 80.04 94.98
2 71.78 92.54

D.6 License of the Assets
PyTorch has a BSD-style license9. Solo-learn has an MIT license10. PyTorch Lightning is licensed under the Apache
License 2.011. The ImageNet12 dataset is publicly available and frequently used as the benchmark dataset. The
category list of ImageNet-100 is also publicly available13.

E Additional Experiments

E.1 Impact of Hyperparameter 𝑞

We investigate the effect of the hyperparameter 𝑞 in our regularizers (Eqs. (6) and (13)). Tab. E.1 shows the results
with 𝑞 ∈ {1, 2} on ImageNet-100 (𝑑 = 2048). The results indicate that 𝑞 = 1 works better than 𝑞 = 2 in VICReg-style
covariance regularizers. Conversely, 𝑞 = 2 works well in Barlow Twins–style cross-correlation regularizers.

E.2 Training Time with ResNet-50 Backbone
Figure E.1 presents the single GPU training cost with ResNet-50 on ImageNet. Due to GPU memory limitation, we
were unable to run Barlow Twins and VICReg at 𝑑 = 16384, and also the grouped version of the proposed models with
block size 𝑏 = 128. Instead of 𝑑 = 16384, we present the results at 𝑑 = 10000.14 As in the results of ImageNet-100, we
can observe that the proposed regularizers are more efficient than the existing regularizers. At 𝑑 = 8192, the proposed
model (without grouping) is 1.3 (= 41414.3/31280.0) times faster than VICReg, and 1.2 (= 37522.0/31306.0) times
faster than Barlow Twins; while at 𝑑 = 10000, it is 1.5 (= 47448.0/32208.3) times faster than VICReg, and 1.3 times
(= 41546.3/32143.7) faster than Barlow Twins.

E.3 Training Time with Distributed Data Parallel
Except for Tab. 4, the training time figures reported in Sec. 5 and Appendix E.2 were measured on a single GPU.
Here we evaluate the timing of distributed data parallel (DDP) training, when multiple GPUs are available. Fig. E.2
shows the elapsed time of DDP training for ten epochs on eight A100 GPUs. With DDP, the cost of communication
between GPUs emerges as an additional factor determining the total computational time, and hence the relative merit
of our method in reducing loss computation time is expected to diminish. Although this is certainly true, our method
is still effective, improving the computation time by a factor of more than 2.2 (= 945.5/428.7) for VICReg and 2.0
(= 740.6/366.4) for Barlow Twins when 𝑑 = 8192 and a factor of 4.4 (= 2833.3/647.1) and 3.1 (= 1943.7/622.7)
when 𝑑 = 16384.

Fig. E.3 shows the elapsed time on ImageNet with ResNet-50. As in ImageNet-100 with ResNet-18 (Fig. E.2),
our method improves speed, but the speed-up factor is smaller: 1.4 (= 6658.1/4858.9) for VICReg and 1.2 (=

9https://github.com/pytorch/pytorch/blob/master/LICENSE
10https://github.com/vturrisi/solo-learn/blob/main/LICENSE
11https://github.com/Lightning-AI/lightning/blob/master/LICENSE
12https://www.image-net.org/
13https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt
14In Section E.3 (see Fig. E.4), we show the results with 𝑑 = 16384 using multi-node DDP computation.
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Figure E.1. Training time and memory usage on ImageNet with ResNet-50 on a single GPU.
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Figure E.2. The elapsed DDP training time on ImageNet-100 with ResNet-18.

5657.6/4868.7) for Barlow Twins when 𝑑 = 8192. When 𝑑 = 10000, the factors are 1.5 (= 7729.9/5035.1) for
VICReg and 1.2 (= 6247.7/5129.6) for Barlow Twins.

In the ImageNet experiments (Figs. E.1 and E.3), all models triggered an out-of-GPU-memory error when 𝑑 =

16384. We thus use multi-node DDP training for 𝑑 = 16384. We evaluated two situations: training using 2 nodes and
4 nodes. In both situations, we set the effective batch size to 1024. Figure E.4 shows the results. Barlow Twins and
VICReg still ran out of memory under 2 nodes, but the proposed models (with or without grouping) worked in this
situation thanks to their efficient memory usage. With 4 nodes, all models were trained successfully, and the proposed
models were slightly faster than Barlow Twins and VICReg. However, in this setting, there is no point in training
our models using 4 nodes, when they are trainable on 2 nodes. If we compare the speed of our models trained on 2
nodes with Barlow Twins and VICReg (which failed to be trained on 2 nodes) on 4 nodes, the advantage of our models
becomes more pronounced.

E.4 Computation Time for Forward and Backward Passes
We analyzed the training time spent for the forward pass (in the model network excluding the loss node), forward
loss computation, and backpropagation. These three types are denoted by “Forward (model)”, “Forward (loss)”, and
“Backward (model + loss)”, respectively. These measurements were quoted from the “Total time (s)” column in the
respective lines in the output of the Simple Profiler in PyTorch Lightning. Note that by default, the profiler only
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Figure E.3. The elapsed DDP training time on ImageNet with ResNet-50.
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Figure E.4. The elapsed multi-node DDP training time on ImageNet with ResNet-50 (𝑑 = 16384).

reports total forward computation time. To separate the total time into “Forward (model)” and “Forward (loss)”,
we specified custom measurement points in our code where the model (backbone network and projection network)
forward computation and the loss computation are performed.15 Since the custom measurement points did not work
for backpropagation, we plot the value of “Strategy.backward” line as the total backpropagation time “Backward
(model + loss)”.

Fig. E.5 presents the results. The times for loss computation and backpropagation both improved with our method;
see Tabs. E.2 and E.3 for the detail of improvements. The improvement in backpropagation is due to reduced time at
the loss node, because Barlow Twins and the proposed method have the same model network and differ only in the loss
used. This reduction in the backpropagation time is not surprising because the same computation graph is traversed in
both the forward and backward passes, and therefore their asymptotic computational complexity is roughly identical.

15https://pytorch-lightning.readthedocs.io/en/1.6.4/advanced/profiler.html#profile-logic-of-your-interest

Table E.2. The improvements for loss and backward computations on ImageNet100 with ResNet-18.

Model #GPU 𝑑 Forward (loss) Backward (model + loss)

Barlow Twins–style 1 8192 7.5 (= 285.5/38.0) 2.5 (= 1101.6/448.6)
16384 23.1 (= 1038.7/44.9) 6.3 (= 2959.1/468.0)

8 8192 7.4 (= 52.5/7.1) 1.9 (= 124.3/67.1)
16384 24.8 (= 183.6/7.4) 3.9 (= 274.0/70.3)

VICReg-style 1 8192 6.0 (= 323.0/53.5) 5.4 (= 2548.8/473.2)
16384 19.5 (= 1166.5/59.8) 18.3 (= 8820.3/482.0)

8 8192 7.0 (= 62.6/8.9) 4.1 (= 300.5/74.2)
16384 24.2 (= 215.7/8.9) 13.2 (= 996.3/75.5)
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Table E.3. The improvements for loss and backward computations on ImageNet with ResNet-50.

Model #GPU 𝑑 Forward (loss) Backward (model + loss)

Barlow Twins–style 1 8192 9.5 (= 751.1/79.2) 2.9 (= 8594.0/2977.5)
10000 13.2 (= 1097.5/83.2) 3.6 (= 11583.0/3181.2)

8 8192 10.6 (= 125.8/11.9) 1.5 (= 2129.1/1463.5)
10000 15.0 (= 184.4/12.3) 1.6 (= 2552.2/1593.5)

VICReg-style 1 8192 8.4 (= 898.8/107.0) 4.1 (= 12346.0/3016.6)
10000 11.9 (= 1311.1/110.3) 5.4 (= 17249.3/3221.7)

8 8192 18.1 (= 280.7/15.5) 2.0 (= 2937.3/1467.1)
10000 25.2 (= 415.7/16.5) 2.4 (= 3752.4/1557.9)
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Figure E.5. The elapsed 10-epoch training time spent on forward model (green) and loss (orange) computation, and backpropagation
(total of model and loss; purple).
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F Code
Listings 1 and 2 present Python-based implementations for covariance and cross-correlation regularizers (without
feature grouping). As explained in Sec. 4, the summary vectors can be efficiently calculated with FFT (see Listing 3).

In the computation of the proposed regularizers, we do not conduct collective operations, such as all-reduce and
gather functions.
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1# Z1, Z2: projected image embeddings (n x d)
2# q: a hyperprameter for L_q^q norm
3

4def xsum_regularizer(Z1, Z2, G, q):
5 # pre-process: centering and normalization
6 Z1 = batch_normalization(Z1)
7 Z2 = batch_normalization(Z2)
8

9 # feature permutation
10 idx = torch.randperm(Z1.shape[1])
11 Z1 = Z1[:, idx]
12 Z2 = Z2[:, idx]
13

14 # summary vector
15 sumvec = cal_sumvec(Z1, Z2, 0) / n
16

17 # loss for off-diagonal elements
18 if q == 1:
19 loss = torch.sum(sumvec[1:].abs())
20 elif q == 2:
21 loss = torch.sum(sumvec[1:].pow(2))
22

23 return loss

Listing 1. Computing Barlow Twins–style cross-correlation regularizer

1# Z: projected image embeddings ([n: batch size] x [d: embedding dimension])
2# q: a hyperparameter for L_q^q norm
3

4def covsum_regularizer(Z, blck_size, q):
5 # pre-process: centering
6 Z = Z - Z.mean(dim=0)
7

8 # feature permutation
9 idx = torch.randperm(Z.shape[1])

10 Z = Z[:, idx]
11

12 # summary vector
13 sumvec = cal_sumvec(Z, Z, 0) / (n - 1)
14

15 # loss for off-diagonal elements
16 if q == 1:
17 loss = torch.sum(sumvec[1:].abs())
18 elif q == 2:
19 loss = torch.sum(sumvec[1:].pow(2))
20

21 return loss

Listing 2. Computing VICReg-style covariance regularizer

1def cal_sumvec(z1, z2, dim):
2 fz1 = fft.rfft(z1)
3 fz2 = fft.rfft(z2)
4 fz1_conj = fz1.conj()
5 fz_prod = fz1_conj * fz2
6 fc = fz_prod.sum(dim=dim)
7 sumvec= fft.irfft(fc)
8 return sumvec

Listing 3. Summary vector computation
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