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Overview
This supplementary material contains additional information that could not be included in the main paper due to space

limitations. In Sec. 1, we describe more implementation details of our method. Concretely, noise scheduling for continuous
time is described in Sec. 1.1. The architecture details and hyperparameters are listed in Sec. 1.2. Lastly, a detailed procedure
for metric computation (including data processing) is described in Sec. 1.3.

In Sec. 2, we provide diverse qualitative experiment results. Specifically, in Sec. 2.1, we qualitatively compare recon-
structed 3D shapes in the mesh domain (reconstruction from point-cloud-based generative model and reconstruction from
our SDF-Diffusion). In addition, we utilize another dataset (especially, ShapeNet version 2) and show 3D shape gener-
ation results on this dataset, which are available in Sec. 2.2. Various 3D shape generations from our SDF-Diffusion in
voxel resolution of 323, 643, and 1283 are available in Sec. 2.3.

1. Implementation Details
1.1. Noise scheduling for continuous time

The conventional denoising diffusion models (DDM) [1] are based on discrete time steps. Instead, following SR3 [4],
we extend our model to learn continuous time steps. ᾱt is deformed by uniformly sampled value between ᾱt and ᾱt−1 so
that t is sampled from continuous distribution U(0, T ). Concretely, instead of using ᾱt directly, U(ᾱt−1, ᾱt) is given to the
DDM process and network, especially during the training phase. In addition, our DDM implementation follows SR3 with
a modification. Following SR3 implementation, its mini-batch uses shared time value, so the noisy data from the forward
process of DDM have the same noise strength, it can bother the model to learn about various noise strengths. We modify it
so that all data in a mini-batch can have different time values. By doing so, SDF-Diffusion can learn continuous time
steps and apply flexible inference time steps.

1.2. Architectural Details

Here, we describe the architectural details of SDF-Diffusion. In Fig. 1, we visualize the detailed network architecture
of SDF-Diffusion. Our network architecture is based on a modified version of U-shaped network similar to SR3 [4].
We replace every 2D CNN layer with a 3D CNN so that it can receive 3D voxel-shaped data and decrease the depth of the
network from 4 to 3. The network consists of residual blocks and self-attention blocks [5]. The first CNN layer converts
the input data channel (1 channel for SDF) into base channels. Then, the down-sample block decreases the voxel resolution
in half through a CNN layer with stride. Similarly, the up-sample block doubles the voxel resolution with nearest neighbor
interpolation and a CNN layer. The features extracted from the residual blocks and the down-sample blocks on the left side
of the network are densely connected to corresponding residual blocks on the right side. In addition, time and category
conditions are transferred to every residual block. Table 1 lists the detailed hyperparameters we used. The single-category
and multi-category networks have slightly different model sizes due to the presence of a layer that receives the category
condition.
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Figure 1. Illustration of our SDF-Diffusion network architecture. Similar network structure is shared in both the first and second
stage models. r3 means the voxel size.

Table 1. Hyperparameters of SDF-Diffusion. Note that the number of epochs of the single-category super-resolution model for voxel
resolution of 1283 is empty because we have tested only 643 resolution on the single-category case.

Shape generation (323) Super-resolution (323 → 643) Super-resolution (643 → 1283)

Diffusion steps 1, 000 1, 000 1, 000
Noise schedule linear linear linear

Model size (single-category) 66.95M 66.95M -
Model size (multi-category) 67.05M 67.05M 40.41M

Base channels 64 64 64
UNet depth 3 3 3

Number of residual blocks 4 4 2
Channels multiple 1, 2, 4 1, 2, 4 1, 2, 4

Input resolution (train / inference) 32 / 32 32 / 64 32 / 128
Attention resolution 8 8 No

Dropout 0.1 0.1 0.1
Epochs (single-category) 10, 000 10, 000 -
Epochs (multi-category) 1, 000 450 150

Learning rate 0.0001 0.0001 0.0001



1.3. Details of Metric Computation Procedure

We use three metrics (i.e., MMD, COV, and 1-NNA) based on both Chamfer Distance(CD) and the Earth Mover’s Distance
(EMD) as the main evaluation metrics.

The two distance metrics are defined as:

CD(X,Y ) =
∑
x∈X

min
y∈Y

∥x− y∥22 +
∑
y∈Y

min
x∈X

∥x− y∥22, (1)

EMD(X,Y ) = min
ϕ:X→Y

∑
x∈X

∥x− ϕ(x)∥2, (2)

where both X and Y are point clouds, and ϕ is a bijection between two point clouds. The main metrics compare the
distributional similarity between sets of point clouds. Thus, we need to sample 3D point clouds from the generated meshes
by SDF-Diffusion.

Specifically, given the trained SDF-Diffusion, we first sample 3D shapes with the same amount for each category in
the validation set. We then randomly sample 2, 048 points from each generated mesh. In addition, the point cloud of each
object is shifted so that all objects are uniformly zero-centered before computing metrics similar to [6]. By removing the
arbitrary offset of the generated samples, we can conduct a fair comparison with only the generated shape.

2. Additional Experiments
2.1. Qualitative Comparison with Reconstructed Meshes

In the manuscript, we compared the qualitative results with other approaches in each domain (point clouds for the other
methods and mesh for ours), as shown in Table 1 and Table 2 of the main paper. Here, we additionally compare the qualitative
results on the mesh domain, which is a continuous surface and suitable for real-world applications. To this end, we compare
with reconstructed meshes from the output of point voxel diffusion (PVD) [7] with shape as points (SAP) [3]. SAP consists
of two modules: a neural network that estimates point normals from point clouds, and a differentiable Poisson solver that
reconstructs meshes from points and their normals through the marching cube algorithm [2]. The multi-category version of
PVD* is used, and SAP is the pre-trained version that the authors have offered.

Figure 2 shows the reconstructed meshes for both PVD* and ours. The surfaces of reconstructed meshes of PVD* are
often uneven and rough because of sparse point clouds and the limitation of point normal estimation quality. Concretely, thin
and sharp object (chair legs in row 4 column 3) is distorted and has uneven thickness. In addition, concave object (cabinet in
row 3 column 3) sometimes collapses because it fails to determine the surface boundary between two close planes. On the
other hand, meshes generated from SDF-Diffusion show smooth and sharp surface details. Result meshes of ours are
reconstructed from the voxel resolution of 643 for a fair comparison.

2.2. Generation Results on ShapeNet Dataset Version 2

Figure 3 shows generated results of our SDF-Diffusion trained on the ShapeNet dataset version 2. We pre-process
the ShapeNet dataset version 2 with the same method depicted in Sec. 4 of the main paper. We train our first-stage model
for several unseen categories in ShapeNet version 1 (bathtub, bookshelf, bottle, faucet, jar, knife, laptop, motorcycle, mug,
pistol, and printer), where we use a single-category scheme for training. Then, the second stage model is trained on every
55-category of the ShapeNet dataset version 2 without category conditions (we do not test training multi-category such as
Sec. 4.2 in the main paper because the dataset has strong category imbalance). As you can see, SDF-Diffusion generates
diverse and high-quality 3D shapes. The visualization shows generated 3D shapes in voxel resolution of 1283.

2.3. More Generation Results

This section shows additional 3D shapes generated by SDF-Diffusion trained on the 13-category ShapeNet dataset.
We show meshes reconstructed from the voxel resolutions of 323, 643, and 1283, where 323 is a low-resolution shape
generated from our first-stage model, and both 643 and 1283 are super-resolution versions of our second-stage models. The
visualization is available in Fig. 4, Fig. 5, and Fig. 6. SDF-Diffusion generates coarse but diverse 3D shapes in 323

resolution and makes them sharper and more detailed by increasing the resolution to 643 and 1283.
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Figure 2. Qualitative comparison of reconstructed meshes between PVD* and ours.

Figure 3. Generated shapes of SDF-Diffusion trained on ShapeNet dataset version 2.
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Figure 4. Visualization of generated 3D shapes in four categories (airplane, bench, cabinet, and telephone).
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Figure 5. Visualization of generated 3D shapes in four categories (car, display, table, chair).
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Figure 6. Visualization of generated 3D shapes in five categories (vessel, lamp, loudspeaker, rifle, sofa).
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