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1. Multi-Spectral Stereo (MS2) Dataset

1.1. Sensor System Configuration

RGB stereo, NIR stereo, and GNSS/IMU sensor were
installed inside the vehicle to ensure safe and reliable oper-
ation under adverse weather conditions such as rain, snow,
fog, and haze, as shown in Fig. 2 of the main paper. A
thermal camera cannot see through a glass, so we cannot
install a thermal camera inside the vehicle. Therefore, Li-
DAR stereo and thermal stereo were built in outside of the
vehicle. LiDARs are water-proof, and thermal cameras are
covered with water-proof housing.

1.2. Calibration

We provide intrinsic and extrinsic parameters of all sen-
sors built into our system to make our dataset applicable
to various computer vision tasks. As shown in Fig. 1, we
utilize 6x6 AprilTag [6] board for stereo RGB, stereo NIR,
RGB-NIR, NIR-IMU, and NIR-LiDAR calibrations [4,10].
Also, we utilize copper-coated line-board to estimate intrin-
sic matrices, radial distortion parameters, and extrinsic ma-
trix of stereo thermal cameras. After that, we utilize a 2x2
AprilTag board with metallic tape attached to estimate an
extrinsic matrix between NIR and thermal cameras. Be-
fore pattern board image acquisitions, both 2x2 board and
line board were cooled down to obtain better thermal image
contrast in the metallic and non-metallic regions.

The original RGB, NIR, and thermal image contain not
necessary regions for various vision applications, such as
car hood and sky area. Also, the projected LiDAR’s depth
points do not appear in the sky area and are invalid in the car
hood. Therefore, after the calibration process, we rectified
and cropped the original RGB, NIR, and thermal images to
remain valid areas only, as shown in Fig. 2. After rectifica-
tion and cropping, RGB, NIR, and thermal images provide
1224 x 384, 1280 x 352, and 640 x 256 spatial resolution,
respectively.

(a) AprilTag (6x6) (b) RGB image (c) NIR image

(d) AprilTag (2x2) (e) NIR image (f) THR image

(g) Line-board (h) THR image (i) Rectified image

Figure 1. Calibration pattern board for multi-sensor calibra-
tion. We utilize a 6x6 AprilTag [6] board for stereo RGB, stereo
NIR, RGB-NIR, NIR-Lidar, and NIR-IMU calibration. Also, a
2x2 AprialTage board is used to estimate the extrinsic matrix be-
tween NIR and thermal camera. We use a copper-coated line board
for stereo thermal camera calibration.

(a) Original Images (RGB/NIR/THR)

(b) Rectified&Cropped Images (RGB/NIR/THR)

Figure 2. Multi-spectrum images for MS2 depth dataset. We
rectified and cropped the original RGB, NIR, and thermal images
based on intrinsic and distortion parameters to make proper train-
ing data for MS2 depth dataset. We cropped invalid areas such as
the vehicle’s hood and sky regions.
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1.3. Sequence List

Multi-Spectral Stereo (MS2) Dataset also provides 24
RAW ROSbag files that are taken under various locations
(e.g., city, campus, residential, road, and suburban), times
(e.g., morning, daytime, and nighttime), and weather condi-
tions (e.g., clear-sky, cloudy, and rainy), as listed in Tab. 1.
Each ROSbag contains raw RGB stereo, NIR stereo, ther-
mal stereo, LiDAR stereo, and GNSS/IMU data stream.
Also, we can observe diverse characteristics of each sensor
under each location, time, and weather condition.

Locations. The location ”Campus” provides a moder-
ate driving scenario with a moderate number of vehicles,
bicycles, motorcycles, and riders. On the other hand, the lo-
cation ”City” provides a complex traffic situation with lots
of dynamic objects (e.g., numerous vehicles and pedestri-
ans). Also, pedestrians and vehicles suddenly appear in
the ”Residential” scenario because of the sidewalk and road
combined conditions and numerous closely located build-
ings and objects. The location ”Suburban” usually contains
only a few vehicles and provides a clean driving scenario.
In the ”Road” location, lots of fast-moving vehicles appear
with a few buildings.

Lighting Condition. Also, as shown in Fig. 3, each
sensor shows different aspects depending on lighting and
weather conditions. RGB images can provide detailed ob-
ject textures, color, and sharp structure information. How-
ever, as the lighting condition gets worse, this information
is limited, saturated, and blurred. On the other hand, NIR
images provide relatively better image quality in low-light
conditions (e.g., Night condition of ”Road1” and ”Road2”).
But, the NIR spectrum is more sensitive to the light source,
and NIR images are easily saturated in car head-light and
street lamp regions. Also, if there are not enough exter-
nal lighting sources, the quality also decreases (e.g., Night
condition of ”Suburban” scenario). Thermal image shows
lighting condition agnostic property since the principle of
thermal imagining is not relevant to the lighting source.

Weather Condition. Under the daytime condition with
clear-sky, RGB and NIR images show clear image qual-
ity with high contrast and details. Also, the thermal image
shows high contrast compared to nighttime and rainy con-
ditions. Because the sun acts as an external heat source to
provide high thermal radiation values for all objects in day-
time conditions with clear-sky. Each object can have more
thermal radiation energy depending on heat absorption and
reflectance ratios. Therefore, a thermal camera can acquire
high-contrast images based on distinguishable thermal ra-
diation values of each object (e.g., Day and Night image
of ”Road2”). However, if there is no strong heat source or
lots of clouds (i.e., Night and Cloudy), the image contrast
decreases. In rainy conditions, RGB, NIR, and thermal im-
ages suffer from light and heat reflections caused by wet
roads.

Table 1. Sequence list of MS2 dataset. The MS2 dataset provides
24 RAW ROSbag files [5] taken under various locations, times,
and weather conditions. Each ROSbag contains raw RGB stereo,
NIR stereo, thermal stereo, LiDAR stereo, and GNSS/IMU data
stream. We can observe diverse sensor characteristics according
to the combination of time, weather, and location.

Index ROSbag Name Time Weather Loc Duration

1 2021-08-06-10-59-33 Morning Clear-sky Campus 1071.0 sec

2 2021-08-06-17-44-55 Daytime Cloudy&Rainy Campus 1100.9 sec

3 2021-08-13-17-06-04 Daytime Clear-sky Campus 984.0 sec

4 2021-08-13-21-18-04 Nightime Clear-sky Campus 1040.0 sec

5 2021-08-06-11-23-45 Morning Clear-sky City 1118.9 sec

6 2021-08-06-16-19-00 Daytime Cloudy&Rainy City 1218.8 sec

7 2021-08-13-15-46-56 Daytime Clear-sky City 1201.0 sec

8 2021-08-13-21-36-10 Nightime Clear-sky City 1212.3 sec

9 2021-08-06-11-37-46 Morning Clear-sky Residential 599.9 sec

10 2021-08-06-16-45-28 Daytime Cloudy&Rainy Residential 665.5 sec

11 2021-08-13-16-14-48 Daytime Clear-sky Residential 929.6 sec

12 2021-08-13-22-03-03 Nightime Clear-sky Residential 773.9 sec

13 2021-08-06-12-06-20 Morning Clear-sky Suburban 632.73 sec

14 2021-08-06-17-10-27 Daytime Cloudy&Rainy Suburban 684.7 sec

15 2021-08-13-16-41-00 Daytime Clear-sky Suburban 579.06 sec

16 2021-08-13-22-27-31 Nightime Clear-sky Suburban 544.9 sec

17 2021-08-06-16-59-13 Daytime Cloudy&Rainy Road1 1177.9 sec

18 2021-08-13-16-31-10 Daytime Clear-sky Road1 579.65 sec

19 2021-08-13-22-16-02 Nightime Clear-sky Road1 543.47 sec

20 2021-08-06-17-21-04 Daytime Cloudy&Rainy Road2 614.2 sec

21 2021-08-13-16-50-57 Daytime Clear-sky Road2 883.8 sec

22 2021-08-13-22-36-41 Nightime Clear-sky Road2 434.6 sec

23 2021-08-13-16-08-46 Daytime Clear-sky Road3 259.9 sec

24 2021-08-13-21-58-13 Nightime Clear-sky Road3 261.3 sec

1.4. Multi-Spectral Stereo (MS2) Depth Dataset

Training Set Split. From the MS2 dataset, we periodi-
cally sampled the thermal images and filtered out the static
vehicle movement to make training, validation, and evalu-
ation splits for the learning of monocular and stereo depth
networks. We utilize ”Road2”, ”Suburban”, some of ”City”
(i.e., index 5,8), and ”Campus” (i.e., index 1,2,3) as a train-
ing set. All ”Residential”, ”Road1”, and ”Road3” are used
for validation and testing sets. Also, some of ”City” (i.e.,
index 6,7) and ”Campus” (i.e., index 4) that have different
lighting and weather condition with training set sequences
are used for validation and testing set. Depending on each
lighting and weather conditions, we divide them into a day-
time evaluation set (i.e., index 9,7,18), nighttime evaluation
set (i.e., index 4,12,19), and rainy evaluation set (i.e., index
6,10,17). The remaining sequences are used for the vali-
dation set. In total, we utilize 26K data pairs for training,
4K pairs for validation, and 5.8K, 6.8K, and 5.2K pairs for
evaluation of daytime, nighttime, and rainy conditions.



(a) Driving Scenario - Campus (Day/Cloudy/Night) (b) Driving Scenario - Residential (Day/Cloudy/Night)

(c) Driving Scenario - City (Day/Rain/Night) (d) Driving Scenario - Suburban (Day/Rain/Night)

(c) Driving Scenario - Road1 (Day/Rain/Night) (d) Driving Scenario - Road2 (Day/Rain/Night)

Figure 3. Data examples of Multi-Spectral Stereo (MS2) outdoor driving dataset. The collected dataset provides about 195K synchro-
nized data taken under locations of campus, city, residential area, road, and suburban with various time slots (morning, day, and night)
and weather conditions (clear-sky, cloudy, and rainy)). For each block, three row indicates RGB, NIR, and thermal images, respectively.
According to the surrounding conditions, each spectrum sensor shows different aspects, advantages, and disadvantages induced by their
sensor characteristics).

2. Qualitative Results

We provide a qualitative comparison results of various
Monocular Depth Estimation (MDE) and Stereo Depth Es-
timation (SDE) networks, as shown in Fig. 4 and Fig. 5.
RGB and NIR images are visualized as reference images
to see lighting and weather condition. We visualize the in-
verse depth map of MDE networks and the disparity map
of SDE networks. Generally, SDE networks (e.g., Gwc-
Net [3], AANet [8], ACVNet [7], Ours) show more accu-
rate and clean disparity maps. Also, MDE networks (e.g.,
AdaBins [1], NeWCRF [9]) are easily affected and over-
fitted by the GT disparity maps. However, MDE networks
have the advantage to estimate depth maps of thin objects
and par objects. Our proposed network leverages both ad-
vantages of MDE and SDE networks based on a monocular
and stereo depth unification with conditional random field
perspective.

3. Limitation&Future Plan

In this paper, we provide Multi-Spectral Stereo (MS2)
Dataset, including stereo RGB, stereo NIR, stereo thermal,
stereo LiDAR data along with GNSS/IMU data. However,
currently, we only provide Ground-Truth (GT) depth labels
of monocular and stereo depth estimation tasks for thermal
images. We plan to make GT depth labels for RGB and
NIR images to investigate the possibility of depth estima-
tion from multi-sensor under various conditions. Also, for
the robust visual perception of a self-driving car, we plan to
annotate object detection and segmentation labels. We keep
collecting lots of driving scenarios to include more diverse
locations and seasons in our dataset. We hope our dataset
encourages active research of various computer vision algo-
rithms from multi-spectral data to achieve high-level perfor-
mance, reliability, and robustness against challenging envi-
ronments.



Evaluation set - Daytime

(a) RGB (Reference Only) (b) NIR (Reference Only) (c) Thermal Image (d) GT disparity

(e) DORN [2] (f) AdaBins [1] (g) NeWCRF [9] (h) Ours (Mono)

(i) GwcNet [3] (j) AANet [8] (k) ACVNet [7] (l) Ours (Stereo)

Evaluation set - Nighttime

(a) RGB (Reference Only) (b) NIR (Reference Only) (c) Thermal Image (d) GT disparity

(e) DORN [2] (f) AdaBins [1] (g) NeWCRF [9] (h) Ours (Mono)

(i) GwcNet [3] (j) AANet [8] (k) ACVNet [7] (l) Ours (Stereo)

Evaluation set - Rainy

(a) RGB (Reference Only) (b) NIR (Reference Only) (c) Thermal Image (d) GT disparity

(e) DORN [2] (f) AdaBins [1] (g) NeWCRF [9] (h) Ours (Mono)

(i) GwcNet [3] (j) AANet [8] (k) ACVNet [7] (l) Ours (Stereo)

Figure 4. Qualitative comparison of inverse depth and disparity maps on the MS2 depth dataset.



Evaluation set - Daytime

(a) RGB (Reference Only) (b) NIR (Reference Only) (c) Thermal Image (d) GT disparity

(e) DORN [2] (f) AdaBins [1] (g) NeWCRF [9] (h) Ours (Mono)

(i) GwcNet [3] (j) AANet [8] (k) ACVNet [7] (l) Ours (Stereo)

Evaluation set - Nighttime

(a) RGB (Reference Only) (b) NIR (Reference Only) (c) Thermal Image (d) GT disparity

(e) DORN [2] (f) AdaBins [1] (g) NeWCRF [9] (h) Ours (Mono)

(i) GwcNet [3] (j) AANet [8] (k) ACVNet [7] (l) Ours (Stereo)

Evaluation set - Rainy

(a) RGB (Reference Only) (b) NIR (Reference Only) (c) Thermal Image (d) GT disparity

(e) DORN [2] (f) AdaBins [1] (g) NeWCRF [9] (h) Ours (Mono)

(i) GwcNet [3] (j) AANet [8] (k) ACVNet [7] (l) Ours (Stereo)

Figure 5. Qualitative comparison of inverse depth and disparity maps on the MS2 depth dataset.
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