
NIPQ: Noise proxy-based Integrated Pseudo-Quantization
Supplementary Materials

1. Overview
In this supplementary material, we present the details of

our implementation and additional experimental results for
various tasks and different datasets. We provide the follow-
ing items:

• The detailed implementation of the cost loss function
in Section 2.

• Detailed Configurations of our experiments in Section
3

• The results of quantization for super resolution task in
Section 4.

• Additional experimental results of object detection on
MS-COCO dataset in Section 5.

• An ablation study on the effect of stochastic rounding
in Section 6.

• An ablation study on the effect of late training stage in
Section 7.

• Experimental results on quantization parameter robust-
ness in Section 8.

• The visualization of the quantization noise distribution
in Section 9

2. Cost Loss Function
In order to restrict the utilization of memory and compu-

tation resources, we introduce an additional cost loss func-
tion in addition to the target loss, as explained in Equa-
tion (4) of the main paper. The cost functions for the
memory consumption Lcost−MP and the computation cost
Lcost−BOP are defined as follows:

Lcost−MP = λwh(
Σi⌊bwi ⌉ · ewi

Σiewi
−bt)+λah(

Σi⌊bai ⌉ · eai
Σieai

−bt),

(1)
Lcost−BOP = λbh(Σi⌊bwi ⌉ · ⌊bai ⌉ ·OPSi − bt), (2)

where h(·) denotes Huber loss, bwi /bai denote the bit-width
of i-th layer’s weight/activation, ewi /eai are the number of

elements in the i-th layer’s weight/activation, OPSi is
FLOPS of the i-th layer and bt denotes the target bit-
width. Lcost−MP regularizes the average bit-width of ac-
tivation/weight to the target bit, and Lcost−BOP regularizes
the sum of overall bit-operation (BOPs) to the target BOPs.
Note that we utilize the bit-operations (BOPs) as a repre-
sentative metric to measure the computation cost of a neural
network, which is commonly used in many previous stud-
ies [5, 6, 23]. However, any arbitrary differentiable function
can be used as a drop-in replacement for the cost function,
and NIPQ automatically optimizes the layer-wise bit-width
to the sweet spot.

On the other hand, while the per-layer (or per-tensor) bit-
width also requires rounding operation during forward op-
eration, NIPQ is not applicable for the bit-width because it
relies on the statistics of quantization error, but it is improv-
able to achieve the statistics for the scalar value. To over-
come this limitation, we propose to update the bit-width via
stochastic rounding with STE (Section 6).

3. Experimental Configuration
In this paper, all experiments are conducted using GPU

servers having 8 x NVIDIA GTX3090 with 24 GB VRAM
with 2 x AMD 7313 (16 Core 32 T). The number of
GPUs is selected to satisfy the minimum requirement of
GPU memory for the target task. All of the experiments
are implemented based on the PyTorch [16] framework
(v1.12.1) [16]. Our source code is also provided. The addi-
tional details of training configuration, e.g., optimizer type,
initial learning rate, decay policy, etc., are determined de-
pending on the characteristics of applications and provided
in the following paragraphs.

Table 1 shows the configurations of ImageNet training
for NIPQ results. In this experiment, we apply quantiza-
tion to every convolution and linear layer, including the
first and last layers. One exception is that the input of the
first convolution layer is fixed as 8-bit. We use SGD with
momentum optimizer and cosine annealing with warmup
scheduling for learning rate adjustment [15]. ηmin is the
final LR multiplier of cosine annealing, and λw, λa, and
λb are the hyper-parameter of resource constraints for the
bit-width of weight, bit-width of activation, and BOPs, re-
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Table 1. Fine-tuning configurations of ImageNet classification task.

Epoch SGD Cosine annealing with warmup λ
Configuration Stage-1 Stage-2 LR Weight decay Warmup len ηmin λw λa λb

ResNet-18 ImageNet 40 3 0.04 1× 10−5 3 1× 10−3 1 1 1

MobileNet-v2 Cifar100 30 3 0.04 5× 10−5 5 1× 10−3 1 1 1
ImageNet 40 3 0.04 1× 10−5 3 1× 10−3 1 1 3

MobileNet-v3 ImageNet 40 3 0.04 1× 10−5 3 1× 10−3 1 1 3

Table 2. Fine-tuning configurations of super-resolution task with EDSR.

Epoch Adam Cosine annealing λ
Configuration Stage-1 Stage-2 LR Weight decay ηmin λw λa λb

EDSR 4bit DIV2K 30 10 1× 10−4 0 1× 10−3 15 15 -
EDSR 3bit DIV2K 40 10 1× 10−4 0 1× 10−3 15 15 -

Table 3. Fine-tuning configurations of object detection task with YoloV5-S.

Epoch SGD Cosine annealing with warmup λ
Configuration Stage-1 Stage-2 LR Weight decay Warmup len ηmin λw λa λb

YoloV5-S Pascal VOC 30 5 0.0032 3.6× 10−4 5 1× 10−1 1 1 -
COCO 35 5 0.0032 3.6× 10−4 5 1× 10−1 1 1 -

Table 4. Fine-tuning configurations of GLUE Dataset with BERT-base.

Epoch AdamW Cosine annealing with warmup λ
Configuration Stage-1 Stage-2 LR Weight decay Warmup len ηmin λw λa λb

BERT-base GLUE 25 5 1e-5 1× 10−1 5 ? 1 1 1

spectively. When knowledge distillation is triggered, we
use EfficientNet-B0 [18] as a teacher network. We use the
conventional dark-knowledge-based distillation [8].

Tables 2 and 3 show the detailed configurations of super-
resolution task and object detection task, respectively. In
both experiments, we keep the precision of the first and last
layers as full-precision and apply low-precision quantiza-
tion to the rest of the layers. In the super-resolution task,
we use Adam optimizer [11] and cosine annealing schedul-
ing for learning rate adjustment. In the object detection task,
we use SGD with momentum optimizer and cosine anneal-
ing with warmup scheduling for learning rate adjustment.
Like the image classification task, ηmin is the final LR mul-
tiplier of cosine annealing, and λw, λa, and λb represent the
hyper-parameters of resource constraints for the bit-width
of weight, bit-width of activation, and BOPs, respectively.

Table 4 shows the detailed configurations of BERT-base
[4] on the GLUE Task dataset. In this experiment, we modi-
fied the code from the huggingface-transformer [22] library.
We apply weight quantization to every linear layer except
the last classification head. Note that we do not quantize ac-
tivation or word embedding. We use the AdamW optimizer
and CosineLR scheduler for fine-tuning BERT except for
the bit parameters because we find that AdamW can induce
instability during training when the magnitude of the cost

loss is too large. We use SGD with momentum optimizer
for the bit parameters. Besides, we also find that α and b pa-
rameters are not well trained when a single global learning
rate is utilized (1e − 5). For fast and reliable convergence,
we use the learning rate of 1e − 2 for bit parameters. In
addition, the gradient of α is multiplied 2b − 1 times over
the global learning rate.

4. Super Resolution Experiments

Network Method
Dataset

Set5 Set14 BSD100 Urban100
4bit 3bit 4bit 3bit 4bit 3bit 4bit 3bit

EDSRx2

DoReFa [25] 37.22 37.13 32.82 32.73 31.63 31.57 30.17 30
TFLite [19] 37.64 37.33 33.24 32.98 31.94 31.76 31.11 30.48
PACT [2] 37.57 37.36 33.2 32.99 31.93 31.77 31.09 30.57

PAMS [12] 37.67 36.76 33.2 32.5 31.94 31.38 31.1 29.5
DDTB [24] 37.72 37.51 33.35 33.17 32.01 31.89 31.39 31.01

NIPQ 37.74 37.66 33.29 33.20 32.01 31.95 31.36 31.13

EDSRx4

DoReFa [25] 30.91 30.76 27.78 26.66 27.04 26.97 24.73 24.59
TFLite [19] 31.54 31.05 28.2 27.92 27.31 27.12 25.28 24.85
PACT [2] 31.32 30.98 28.07 27.87 27.21 27.09 25.05 24.82

PAMS [12] 31.59 27.25 28.2 25.24 27.32 25.38 25.32 22.76
DDTB [24] 31.85 31.52 28.39 28.18 27.44 27.3 25.69 25.33

NIPQ 31.73 31.62 28.34 28.25 27.41 27.36 25.56 25.39

Table 5. PSNR comparison of quantized EDSR [13] of scale 4 and
scale 2

Table 5 shows the quantitative analysis of NIPQ on su-



(a) Ground truth (b) DDTB [24] (c) NIPQ (d) DDTB [24] (e) NIPQ

Figure 1. Qualitative results of super resolution on DIV2K dataset. EDSRx4 is quantized into 3-bit for both weights and activations.

per resolution task, and Figure 1 visualizes the quality of
the generated figures. We report PSNR as a quantitative
measure, one of the well-known metrics in the area of super
resolution. NIPQ outmatches the specialized quantization
algorithm for super resolution, DDTB [24], which applies
dynamic quantization that adjusts the quantization step size
depending on the input data. These experimental results in-
dicate that NIPQ works well in the regression task as well.

5. Additional Experiments on Object Detection

Table 6. mAP comparison of Yolov5-S [10] on COCO dataset [14]

Bit-width (Weight / Activation)
FP/FP 5/5 4/4 3/3

DoReFa [25] 0.354 0.266 0.24 0.191
PACT [2] 0.354 0.313 0.294 0.246
LSQ [7] 0.354 0.32 0.291 0.235
NIPQ 0.354 0.33 0.317 0.284

We conduct an additional experiment on object detec-
tion task with the COCO dataset and report mAP on Table
6. NIPQ obtains the best results compared to existing quan-
tization studies in the same average bit-width.

In addition, in Figure 2, we visualize the qualitative re-
sults of NIPQ on the VOC dataset. Bounding box regression
and classification results of the quantized network are pre-
sented. As shown in the figure, NIPQ works surprisingly
well in the 3-bit domain on the challenging object detection
problem. YoloV5-S has a complicated structure, and the
sensitivity of each layer is highly different. Because NIPQ
has the ability to allocate the bit-width aware of the sensi-
tivity automatically and enable stable convergence without

STE instability, the quality of the quantized network outper-
forms all of the previous methods by a large margin.

6. Stochastic Rounding for Bit-width

While we propose an alternative training scheme for
quantization instead of using STE, updating the bit-width
is a remaining problem that is not addressed in the NIPQ
pipeline. The proposed noise proxy is designed to update
the learnable parameters by emulating the quantization op-
erator based on PQN. However, the bit-width is assigned as
a scalar value per the target tensor, and thereby it is impos-
sible to aggregate the coarse-grained effect of the quantiza-
tion operator. When we use rounding-based QAT with STE
approximation, the bit-width also suffers from the instabil-
ity of STE, resulting in highly unreliable result, as shown
in Figure 3. Due to this limitation, many previous studies
rely on the continuous approximation of bit-width during
training [3, 20] to avoid the instability problem. However,
the representation mismatches to the domain of bit-width,
resulting in suboptimal convergence in practice, especially
when the target bit-width is in a sub-4-bit domain. In this
paper, we propose an alternative idea to utilize the stochas-
tic rounding of bit-width during training. Stochastic round-
ing is an unbiased estimator, so the learnable bit-width con-
verges to the optimal point as the learning progresses. In
addition, the bit-width is evaluated in the discrete domain
during training, which mitigates the domain gap between
training and inference. As shown in Figure 3, the stochastic
rounding consistently draws the pareto-front line with small
variance, which enables us to search for the best quantiza-
tion configurations within the given resource budget.



(a) NIPQ (b) LSQ [7] (c) PACT [2] (d) DoReFa [25]

Figure 2. Qualitative results of object detection on the VOC dataset. Yolov5-S is quantized into 3-bit weights and activations according to
each quantization method.
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Figure 3. Accuracy comparison of MobileNet-v2 at CIFAR-100
dataset with different bit-width training strategies. We ran the ex-
periments with 10 repetitions, increasing from 0.5 BOPs to 1.4
BOPs by 0.1 BOPs steps.

7. Comparison for the Late Training Stage

Table 7. Comparison of accuracy regarding the late training stage.
MobileNet-v2 is trained in 30 epochs and finetuned in 3 epochs on
the CIFAR-100 dataset. The target computation overhead is 1.0
GBlops

FP Without Tuning BN update QAT finetune
Top-1 75.04 70.45 72.99 73.29

In Table 7, we show the results of NIPQ with different
late training stage policies. As shown in the table, BN up-
date offers a large performance benefit compared to the ac-
curacy of the NIPQ training without the late stage tuning.
Because PQN of NIPQ disturbs the statistics of normal-
ization layers, the correction of the statistics is essential to
maximize the accuracy in the inference phase. In addition,
QAT finetune offers an additional performance improve-

ment by giving an additional chance to adjust the learnable
parameters of the entire network without the effect of PQN
with a small learning rate, which enables the stabilization of
network parameters near the optimal point with the tiniest
effect of STE instability.

8. Robustness of the quantization parameters
NIPQ also enhances the robustness of the quantization

parameters as well as the network parameter. Figure 4 visu-
alizes the results of measuring the accuracy while changing
the quantization step size or the truncation interval. The
more robust the network, the more it can endure the change
of the quantization configuration. As shown in the figure,
NIPQ shows comparable or superior results to the previous
best algorithm for robustness, KURE [17]. It is especially
worthy that existing studies have focused on improving the
robustness of weight only [1, 17], but NIPQ also improves
the robustness of activation as well by a large margin. To the
best of our knowledge, this is for the first time that activa-
tion robustness can be improved, which is a crucial benefit
of deploying networks in a noisy environment.

9. Quantization Noise Distribution
In Figure 5, we visualize the quantization noise distri-

bution of ResNet-18’s 12-th convolution weight in different
bit-widths. When applying quantization, not only rounding
but also truncation is applied. The previous study argues
that the quantization noise distribution follows a uniform
distribution regardless of input distribution when the num-
ber of bits is sufficiently large [21]. According to our obser-
vation, the statement is held in practice when the bit-width
is larger than 4-bit. However, in sub-4-bit precision, the
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Figure 4. Robustness of quantized MobileNet-V2 on ImageNet against the change of α of the quantization operator for weight and
activation. ∆′ is the trained α and ∆ is the scaled one. NIPQ+KD represents the quantized network with knowledge distillation [9] using
EfficientNet-B0 [18] as a teacher.
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Figure 5. Quantization noise distribution of ResNet-18’s 12-th convolution weight. (left top) 32 bit (FP) distribution. (right top) N-bit
uniform quantized distribution. (left bottom) Real quantization noise distribution. (right bottom) Sampled quantization noise distribution.

distribution of noise seems to follow a bell-shaped curve in-
stead of a uniform distribution. Due to these characteristics,
conventionally uniform or gaussian distributions are often
used to approximate PQN [3, 20]. However, as presented
in this paper, the precise sampling of PQN following the
quantization error distribution is essential to guarantee the
convergence on the optimal point, while the uniform dis-
tribution shows comparable results in practice empirically.
In this work, we realize the sampling process of quantiza-
tion error distribution on GPU with practical performance
as follows: first, the probability density function (PDF) of
the quantization error distribution is estimated based on the
histogram with 256 bins. Then, the distribution is sampled
from the estimated PDF of the histogram. As shown in Fig-
ure 5, the sampled distribution precisely follows the quanti-
zation error distribution.
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