
6. Supplementary Material
In this paper we presented GraVoS - Gradient-based Voxel

Selection, a novel and generic voxel selection method for
voxel-based 3D object detection. To demonstrate the effec-
tiveness of our approach we conduct a comprehensive study
of various SoTA 3D detectors in Section 6.1. We also pro-
vide additional ablation studies in Section 6.2 and specific
implementation details for each SoTA model in Section 6.3.

6.1. Additional SoTA Results

In the main paper we provided results of SoTA methods
with and without our proposed data modification method.
Here, we provide additional results for these methods.

Table 7 reports the results for the 3D detection benchmark
and Table 8 reports the results for the Bird-Eye View (BEV)
detection benchmark. The main additional result here is
the error-reduction metric for each method on the different
classes and difficulties. The error-reduction is specified by:

Error reduction =
APours −APoriginal

100−APoriginal
∗ 100,

where APours represents our average-precision and
APoriginal represents the original method’s average-
precision. We note that all the models were pre-trained using
the original configuration [32] with batch size as mentioned
in Section 6.3, to generate two training stage detectors: early
f(V ; θe) and late f(V ; θl). The former was trained for only
1 epoch, while the latter was fully trained for 80 epochs.

Fig. 9 depicts some qualitative results of our proposed
approach, for different object classes. It shows the gradients’
magnitude for each voxel, as a color-map from blue to red,
representing low to high values respectively, along with the
final selected voxel subset. As can be seen, most of the
objects’ voxels have high gradient’s magnitude value and
therefore maintain theirs voxels after the selection stage.
The background’s voxels, however, usually do not have high
gradient magnitude. Hence, less likely to be retained after
the selection process.

Similar to the popular Dropout [30] augmentation, our
data modification approach is general and can be applied to
any voxel-based detection architecture. We showed that it
is effective and can be used to improve multiple SoTA 3D
detectors.

Table 9 provides comparison for the 3D detection bench-
mark. It shows comparison between the original detector,
additional epochs training , and our voxel selection approach,
for SECOND [35], Voxel R-CNN [6], and Part-A2 [26] (con-
figuration detailed in Section 6.3). Note that comparisons for
CenterPoint [42] are not provided due to inconsistent results.
We believe the inconsistencies are due to the fact that [42]
was not originally designed and optimized for the KITTI

dataset. Redesigning and optimizing detectors of previous
works is beyond the scope of this work. The results show
that in cases where a fully optimized detector is provided,
GraVoS provides an improved detector.

6.2. Additional ablation studies

Interaction with different augmentations. We tested how
our method interacts with different augmentations. Table 5
shows different augmentations protocols of [35] with and
without our method. Table 5 shows that our method’s gain
is even higher when removing some augmentations such as
GT sampling and Global augmentations i.e., rotation, flip,
and scaling. Interestingly, when removing GT sampling and
adding ours we achieve on-par performance as the baseline
with GT sampling. This result further demonstrates the
effectiveness of our approach, since GT sampling requires
explicit GT annotations, whereas ours does not.

Aug. Average performance
Method Global GT Ped. Cyc. Car All
[35] x x 49.96 69.51 83.80 67.76
+ Ours x x 52.43 71.13 82.89 68.81
[35] x - 46.42 51.92 80.34 59.56
+ Ours x - 48.87 69.11 83.46 67.15
[35] - - 33.37 37.33 69.02 46.57
+ Ours - - 35.50 42.33 70.02 49.28

Table 5. Without other augmentation, our method is even more
beneficial. This is especially evident as it requires no GT labeling.

Deeper architecture. We compared our method with a
deeper backbone of [35]. We duplicated layers in the back-
bone 2,4 and 8 times. Table 6 shows that our method pro-
vides performance gains over the original detector while a
modified deeper architecture worsens the performance a bit.
The degraded performance can be explained by overfitting.
This shows that the benefit of our method is not attributed to
a more complicated and deeper network.

Average performance
Method Ped. Cyc. Car All
[35] 49.96 69.51 83.80 67.76
[35] + Ours 52.43 71.13 82.89 68.81
[35] (x2) 50.11 68.23 83.17 67.17
[35] (x4) 50.00 69.82 82.80 67.54
[35] (x8) 48.14 65.97 82.71 65.61

Table 6. Our approach demonstrates improved performance over
modified deeper architectures.

Voxel-selection alternatives. Align with Fig. 6 that shows
alternative voxel selection methods on [35], we additionally
provide results on [6]. Fig. 8 shows that while other alterna-
tives barely improve the baseline, GraVoS greatly improve
the baseline.



Car Cyclist Pedestrian Average
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Car Cyc. Ped. All
SECOND [35] 90.79 81.87 78.75 81.85 65.42 61.26 54.90 49.84 45.15 83.80 69.51 49.96 67.76
Ours 89.53 81.06 78.07 84.36 66.41 62.61 57.75 51.99 47.54 82.89 71.13 52.43 68.81
Error reduction -13.68 -4.47 -3.20 13.83 2.86 3.48 6.32 4.29 4.36 -5.62 5.31 4.94 3.26
Voxel R-CNN [6] 92.62 85.13 82.73 89.83 72.49 68.87 66.94 59.88 54.95 86.83 77.06 60.59 74.83
Ours 92.40 85.41 82.84 91.97 72.98 68.37 68.52 61.63 56.71 86.88 77.77 62.29 75.65
Error reduction -2.98 1.88 0.64 21.04 1.78 -1.61 4.78 4.36 3.91 0.38 3.10 4.31 3.26
Part-A2 [26] 91.88 82.64 80.21 89.45 71.71 67.74 65.37 58.43 53.62 84.91 76.30 59.14 73.45
Ours 91.68 82.58 81.67 90.64 74.03 69.64 65.82 59.58 54.55 85.31 78.10 59.98 74.47
Error reduction -2.46 -0.35 7.38 11.28 8.20 5.89 1.30 2.77 2.01 2.65 7.59 2.06 3.84
CenterPoint [42] 89.58 82.09 79.58 80.27 62.85 60.13 56.85 53.17 49.73 83.75 67.75 53.25 68.25
Ours 88.74 81.74 79.53 83.40 64.81 61.42 58.02 54.64 50.94 83.34 69.88 53.53 69.25
Error reduction -8.06 -1.95 -0.24 15.86 5.28 3.24 2.71 3.14 2.41 -2.52 6.60 0.60 3.15

Table 7. Performance on the 3D detection benchmark. Each method’s performance is compared with and without our voxel selection.
Results are reported for the Easy, Moderate (Mod.) and Hard categories on the three classes. Evidently, GraVoS improves the performance
of all the methods for the non-prevalent classes, while it might slightly degrade the performance for the prevalent class. The average
performance is always improved.

Car Cyclist Pedestrian Average
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Car Cyc. Ped. All
SECOND [35] 92.30 89.68 87.51 87.87 70.91 66.57 60.94 55.73 51.56 89.83 75.12 56.08 73.67
Ours 92.86 89.62 87.26 89.02 70.88 66.77 62.23 56.78 52.63 89.91 75.56 57.21 74.23
Error reduction 7.27 -0.58 -2.00 9.48 -0.10 0.60 3.30 2.37 2.21 0.79 1.77 2.57 2.13
Voxel R-CNN [6] 95.96 91.43 90.70 93.63 76.09 72.58 69.97 63.60 59.04 92.70 80.77 64.20 79.22
Ours 95.96 91.96 89.49 94.47 76.32 71.60 72.37 66.24 60.31 92.47 80.80 66.31 79.86
Error reduction 0 6.18 -13.01 13.19 0.96 -3.57 7.99 7.25 3.10 -3.15 0.16 5.89 3.08
Part-A2 [26] 92.89 90.14 88.17 91.19 75.42 70.97 68.31 61.70 57.33 90.40 79.19 62.45 77.35
Ours 92.85 90.07 88.13 93.13 75.91 72.68 68.51 62.40 58.04 90.35 80.57 62.98 77.97
Error reduction -0.56 -0.71 -0.34 22.02 1.99 5.89 0.63 1.83 1.66 -0.52 6.63 1.41 2.74
CenterPoint [42] 92.26 89.30 88.10 83.84 66.40 63.05 61.26 58.08 54.83 89.89 71.10 58.06 73.01
Ours 91.91 88.90 88.00 85.68 68.22 64.51 62.32 59.19 55.80 89.60 72.80 59.10 73.84
Error reduction -4.52 -3.74 -0.84 11.39 5.42 3.95 2.74 2.65 2.15 -2.87 5.88 2.48 3.08

Table 8. Performance on the Bird Eye View (BEV) detection benchmark. Similarly to Table 1, our method is beneficial for all four
detectors.

6.3. Implementation details

This work was done using our reproduction of the pre-
trained models provided by the publicly available Open-
PCDet toolbox [32]. For a fair comparison, the default
configurations for all the detectors were used for this repro-
duction. During fine-tuning with our voxel selection stage
(GraVoS), the detectors were trained for additional epochs.
When fine-tuning a deep neural networks it is usually re-
quired to change the Learning rate (LR) and Weight Decay
(WD). The optimizer may also have effect on the fine-tuned
network. Recent work [16] has shown that while Adam
optimizer known to converge faster than Stochastic Gradi-
ent Decent (SGD), it may have generalization degradation.
This degradation may be caused by extreme learning rates
that are usually used in the end of training. Hence, a new
configuration for the optimizer is required.

To realize this idea, we subdivide the fine-tuning process
into two steps. In the first step we fine-tune each detector
for E1 epochs using its original optimizer – Adam-onecycle.
While for the second step we train for E2 epochs using
SGD with a step decay scheduler. This way we get the
convergence speed from the first step while maintaining
good generalization at the second step (end of training).

Specifically, the Adam-onecycle used in the first step is an
Adam optimizer wrapped with Cosine-annealing scheduler
that rises for part of the period and then declines. We set
the rising time to be 30% of the optimizer total number
of epochs E1. In practice we chose E1 = 40. The SGD
optimizer, in the second step, includes a step decay scheduler.
We set 2 steps for the step decay scheduler, S1 and S2. These
steps, S1 and S2, have been chosen based on E2, where at
each step we reduced the learning rate by a factor of 10. In
practice, we chose S1 = 7 and S2 = 13 for the steps and



Car Cyclist Pedestrian Average
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Car Cyc. Ped. All
SECOND [35] 90.79 81.87 78.75 81.85 65.42 61.26 54.90 49.84 45.15 83.80 69.51 49.96 67.76
SECOND† 90.05 81.50 78.55 81.52 65.47 61.65 54.74 49.44 44.57 83.37 69.55 49.58 67.50
Ours 89.53 81.06 78.07 84.36 66.41 62.61 57.75 51.99 47.54 82.89 71.13 52.43 68.81
Voxel R-CNN [6] 92.62 85.13 82.73 89.83 72.49 68.87 66.94 59.88 54.95 86.83 77.06 60.59 74.83
Voxel R-CNN† 92.69 85.25 82.85 90.55 73.06 69.62 65.64 59.58 54.75 86.93 77.74 59.99 74.89
Ours 92.40 85.41 82.84 91.97 72.98 68.37 68.52 61.63 56.71 86.88 77.77 62.29 75.65
Part-A2 [26] 91.88 82.64 80.21 89.45 71.71 67.74 65.37 58.43 53.62 84.91 76.30 59.14 73.45
Part-A2† 92.06 82.71 81.78 88.86 72.86 68.53 66.00 58.71 53.86 85.52 76.75 59.52 73.93
Ours 91.68 82.58 81.67 90.64 74.03 69.64 65.82 59.58 54.55 85.31 78.10 59.98 74.47

Table 9. Training scheme comparison on the 3D detection benchmark. Each detector with † represents the detector after continuing to
train with the same number of epochs, learning rate, and scheduler as in our method but without our voxel selection module.

Figure 8. Comparison to alternative approaches. GraVoS is com-
pared to Dropout, BgSampling and InvFreqSampling for different
voxel selection ratios. All experiments were conducted on [6]. The
baseline is the constant performance of the detector (all voxels).
GraVoS outperforms other approaches significantly.

E2 = 20 for the SGD optimizer total number of epochs.
For each detector, the LR and WD were usually chosen

to be about half of the original values. The specific configu-
ration for each detector is given hereafter, where the voxel
dimension are set to be (0.05, 0.05, 0.1) for all detectors.
SECOND [35]. For SECOND we set the batch size to be 4.
The LR and WD of the first step are set to 0.005, whereas
for the second step we changed the LR and WD to 0.003.
Within our voxel selection stage (GraVoS), the location loss
rpn_loss_loc was used.
Voxel R-CNN [6]. For Voxel R-CNN we set the batch size
to be 4. The LR and Weight Decay (WD) of the first step
are set to 0.005, whereas for the second step we changed
the LR and WD to 0.003. Within our voxel selection stage
(GraVoS), the location loss rpn_loss_loc was used.
Part-A2 [26]. For Part-A2 we set the batch size to be 4. The
LR and WD of the first step are set to 0.005, whereas for the
second step we changed the LR and WD to 0.003. For the
voxel selection used in this detector, we chose the rpn_loss

loss which composed of the box regression and the classifier
losses.
CenterPoint [42]. For CenterPoint we set the batch size to
be 4. The LR was set for the first and second steps to 0.002.
The WD of the first step was set to 0.005, whereas for the
second step we decreased it to 0.003. For the voxel selection
used in this detector, we chose the hm_loss_head_0 loss
which corresponds to the center heatmap head presented in
the original paper [42]. This loss is essentially equivalent to
the location loss in other methods.



(a) Gradinent magnitudes (b) Final subset Smf (a) Gradinent magnitudes (b) Final subset Smf

Figure 9. Gradient-based voxel selection visualization. In each row we have two pairs of images (left pair and right pair). Each pair
represents the gradient magnitude (a) along with the final choice subset gradient magnitudes (b). The top row depicts the Cyclist class, where
in the second and third rows we have the Car and Pedestrian classes respectively. At the bottom row we have two sub-scenes with multiple
classes. The magnitude of the gradients is depicted as a color-map from blue to red representing low to high values.
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