
Learning Common Rationale to Improve Self-Supervised Representation for
Fine-Grained Visual Recognition Problems

A. Algorithm
We present the pseudocode of our method in algo-

rithm A1.

B. Understanding the Role of Each Projection

Image

High
variance

Low
variance

Figure B1. Visualization of high-and-low-variance projections of
our method. The first row is the original input images. The 2-4
rows are the visualization of the top three high-variance linear pro-
jections, and the 5-7 rows are the visualization of the three projec-
tions corresponding to the lowest variance. Note that the colour of
the heat map is normalized. It only indicates the relative strength
within images, not the absolute value.

In this section, we explore the role of the K linear pro-
jections in the GradCAM Fitting Branch (GFB). To better
analyze the importance of each projection, we consider the
variance of the output of each projection. Higher variance
indicates strong signal strength. Figure B1 visualize the out-
put of the projection with the three highest variances and
three lowest variances. It can be seen that projections with
higher variance tend to produce more meaningful output.
For example, the projection with the highest variance seems
to capture clues that humans rely on to judge fine-grained
objects, e.g., the head, body, and back of birds. In contrast,
projections with the lowest variance barely attend the rea-

Figure B2. The rank-1 of retrieval task of our methods with dif-
ferent projections selection on the FGVC Aircraft datasets.
“high-variance K” means selecting the first eight high-variance
projections from 32 projections; “random K” represents randomly
selecting eight projections from the remaining 24 projections after
exclusive the first eight high-variance projections; “all K” repre-
sents all 32 projections selected.

sonable regions.

Figure B2 shows another experiment to verify the role
of different projections. In Figure B2, the curve shows the
rank-1 accuracy of retrieval task on 100 epochs on the FGVC
Aircraft datasets. From 0 to 60 epochs, we use all 32
projections (K=32) and find the rank-1 accuracy increases
significantly. After 60 epochs, we test the three different
settings: our method still with all 32 projections, referring
as “Ours (all K)” in the red line; our method with the first
eight high-variance projections, referring as “Ours (high-
variance K)” in brown line; our method with random eight
projections chosen from the remaining 24 projections after
discarding the top-eight high-variance projections, referring
as “Ours (random K)” in the green line. As we can see, the
rank-1 greatly increase then gradually becomes stable in the
method of Ours (all K) and Ours (high-variance K), while
the rank-1 drop sharply then keep stable in the method of
Ours (random K). This indicates that the top variance pro-
jection preserves the most discriminative rationales. Inter-
estingly, the role of those top-variance projections is akin to
that of the top eigenvectors in Principal Component Analy-
sis.

Algorithm A1 Pseudocode of Learning Common Rationale on MoCo, PyTorch-style.

ψq , ψk: encoder networks for query and key
queue: dictionary as a queue of Q keys (C ×Q)
#m: momentum
t: temperature in contrastive loss
τ : temperature in KL Divergence loss

Initialize key network parameters
ψk.params = ψq .params
Load a minibatch x with N samples
for x in dataloader: do
two different random augmentations
xq = aug(x)
xk = aug(x)
#**************************************
calculate MoCo contrastive loss
#**************************************
q = ψq .forward(xq) # queries: N × C
k = ψk.forward(xk)# keys: N × C
k = k.detach()# no gradient to keys
positive and negative logits.
logits pos = bmm(q.view(N ,1,C), k.view(N,C,1))# shape:N × 1
logits neg = mm(q.view(N ,C), queue.view(C,Q))# shape:N ×Q
logits = cat([logits pos, logits neg], dim=1) # shape:N × (1 +Q)
MoCo contrastive loss, positives are the 0-th.
labels = zeros(N)
loss = CrossEntropyLoss(logits/t, labels)

#**************************************
#calculate KL loss
#**************************************
#get feature map in query network.
feat map=get cov5(ψq .params) #shape:N × 7× 7× 2048
#calculate gradient of feature map w.r.t. logits pos.
feat grads=autograd.grad(logits pos,feat map)#shape:N × 7× 7× 2048
#calculate GradCAM map
gradcam map=get gradcam(feat grads) #shape:N × 7× 7
#calculate attention mask
attention mask=projections max(feat map)#shape:N × 7× 7
#KL loss: attention mask and gradcam map
KL loss=kl div((attention mask.view(N ,-1)/τ).softmax(dim=-1).log(),(gradcam map.view(N ,-1)/τ).softmax(dim=-1))
loss+=ν*KL loss
loss.backward()

#SGD update for query network
update (ψq .params)
#moment update for key network
ψk.params = m*ψk.params + (1-m)*ψq .params
#update dictionary: enqueue and dequeue
enqueue(queue, k)
dequeue(queue)

end for

C. Performance on Non-fine-grained Dataset

Table C1. Retrieval performance (%) of our proposed method vs.
MoCo v2 on non-fine-grained dataset (CIFAR-100).

Method Metrics
rank-1 rank-5 mAP

MoCo v2 12.01 30.30 3.04
Ours 27.14 51.25 6.44

To observe the performance of our proposed method on
the non-fine-grained dataset, we conduct experiments of our
method vs. MoCo v2 on CIFAR-100 dataset shown in
Table C1. From Table C1, we can see that our method also
works for non-fine-grained cases.

D. The Impact of Number of Projections on
Non-fine-grained Dataset.

Figure D1. Comparison of MoCo v2 (the blue plot) baseline with
our method (the red plot) w.r.t. K on the CIFAR-100 dataset.

To explore the impact of the number of linear projections
on the non-fine-grained dataset CIFAR-100, we conduct
experiments with the different numbers of K. Figure D1
shows the retrieval results of rank-1 w.r.t. eight different
projections. As we can see, the rank-1 peaks at 27.14%
with K around 8. With the increase of K from 32, the per-
formance decreases and then gradually becomes stable.

E. The Impact of GFB Structure on Non-fine-
grained Dataset.

In this section, we investigate the impact of GFB
structure for the non-fine-grained case by evaluating on
CIFAR-100. We follow a similar experimental approach
as in the main paper by varying the number of projections.
As seen from Figure D1, the best number of projections

Table E1. Retrieval performance (%) of our methods and using
MLP as the alternative GFB branch. The evaluation is on the
CIFAR-100 dataset.

Dataset Architecture rank-1 rank-5 mAP

CIFAR-100
Ours(K=8) 27.14 51.25 6.44

Ours(K=32) 20.02 40.52 4.35
MLP 19.71 40.32 4.34

seems to be 8, but further increasing the number of projec-
tions to 256 does not lead to a significant drop as the case
for fine-grained dataset (refer to Figure 4 in the main paper).

Also, we consider whether we can use multi-layer per-
ception (MLP) to replace the maximized projections in the
proposed method shown in Table E1. We find MLP per-
forms similarly to our methods when K ≥ 32. This is also
different from the case in the fine-grained case. That obser-
vation indicates that GFB might have a different character-
istic for non-fine-grained data. We plan to leave this in our
future work.

F. Ablation study of weights λ and ν.

Table F1. Retrieval performance (%) w.r.t the impact of weights λ
and ν on the CUB-200-2011 dataset.

Method λ ν rank-1

LCL+LKL (Ours)

1 1 47.52
1 0.1 48.83
1 0.01 49.69
1 0.001 46.63

Table F1 reports the retrieval performance for different
values of the loss term coefficients in the proposed method,
where λ and ν control the weight of LCL and LKL, respec-
tively. We set the weight of LCL as 1 using a simple grid
search method to find that the weight of LKL as 0.01 is the
best.

G. The Impact of Embedding Dimension.

Table G1. Rank-1 accuracy (%) of our method with different em-
bedding dimensionalities on the retrieval task with 100 pretraining
epochs on the CUB-200-2011 dataset.

Dimensionality 64 128 256 512 1024
rank-1 47.48 48.72 49.69 49.46 48.55

Our method is based on the network structure of MoCo
v2, and thus we observe the dependency on the dimension-
ality of the embedding vector shown in Table G1. Com-
pared to MoCo v2 using 128 as the dimensionality, the
impact of embedding vector in our method is different.

The performance on the CUB-200-2011 dataset increases
firstly from 47.48% rank-1 to 49.69 rank-1 on retrieval task
with the dimensionality from 64 to 256. After 256, the per-
formance decreased. Thus, our method uses 256 as the di-
mensionality of the embedding vector.

	. Algorithm
	. Understanding the Role of Each Projection
	. Performance on Non-fine-grained Dataset
	. The Impact of Number of Projections on Non-fine-grained Dataset.
	. The Impact of GFB Structure on Non-fine-grained Dataset.
	. Ablation study of weights and .
	. The Impact of Embedding Dimension.

