
A. Implementation details
Network architectures. Similar to FOMM [52], for our

keypoint predictor C we employ a U-Net [50] backbone
operating on 64 ⇥ 64 resolution input images. Following
FOMM [52], the architecture consists of five ”convolution
- batch norm - ReLU - pooling” blocks in the encoder and
five ”upsample - convolution - batch norm - ReLU” blocks
in the decoder. For the generator G, we use a simple decoder
architecture. We use embedding size Ne = 64 for all the
datasets. In order to regularize the embeddings, we apply
differentiable whitening [54], which we found to provide
additional training stability. Given the embedding e, we
transform it to a 43 voxel cube with 512 features using
a fully connected layer. This voxel cube is then passed
through four 3D-Residual Blocks with upsampling. The
3D-Residual block consists of two 3 ⇥ 3 ⇥ 3 convolutions
and two batch normalization in the main branch, and one 1⇥
1⇥ 1 convolution in the residual branch. We choose ReLU
for our non-linearity. Each 3D-Residual block reduces the
number of features two times, while also increasing the
resolution two times using nearest neighbor upsampling.
After the final upsampling layer, the voxel cube has size
643 and 32 features. We make use of a final projection layer
implemented as a 1⇥ 1⇥ 1 convolution preceded by batch
normalization to obtain 1+3+10 features for density, RGB,
and LBS volumes, respectively.

Neural rendering. For neural rendering, we use fixed
camera extrinsics equal to the identity matrix, and a fixed
intrinsics matrix assuming a field of view of 0.175 [41].
Based on this configuration, we define the region in which
we sample points for rendering to be the cube span-
ning the region [�1.0088, 1.0088] ⇥ [�1.0088, 1.0088] ⇥
[9.5000, 11.5000]. The camera in our settings looks in the
positive z direction. We call this region the rendering cube.
We use the rendering cube intersections with casted rays to
define the near and far camera planes, and uniformly sample
128 points between them. We note that during the G �
phase, there is no need to capture small parts, as a single
part is employed. Thus, to speed up training, we reduce
the number of sampling points to 48 in this phase. When
mapping the rendering cube to the respective volumes, we
increase the rendering cube by a factor of 1.075. For the
Cats [79] dataset, we scale the rendering cube by a factor
of 1.2. In this manner, we increase the amount of actual
space that can be covered by the modeled volume, allowing
for a larger set of transformations. Following NeRF [37],
we apply perturbations to the sampled point in two ways
during training. First, we perturb the position of each point
along the ray. Second, we add noise to the sampled densities
before rendering. We use a standard deviation of 0.5 for the
noise. As the geometry is mostly discovered at the begining
of training, we linearly decrease it during each phase of
training down to zero at 100k training steps.

Perspective-n-Point. We obtain a solution to the PnP
problem leveraging the differentiable EPnP [28] implemen-
tation from PyTorch3D [44]. For each part p, we predict
Nk = 53 = 125 keypoints, for a total of Np ⇥Nk = 125⇥
10 = 1250 keypoints. Each keypoint is represented with
an unconstrained three-dimensional parameter, followed by
sigmoid and normalization to ensure that each individual
keypoint always lies inside the rendering cube. We initialize
3D keypoints for each part such that they form a regular
cubical grid with 5 equally spaced keypoints on each side
of the cube. Due to possible incoherent arrangements
between 2D and 3D keypoints, the estimated part poses
may correspond to object positions outside the rendering
box. This behavior would prevent the affected parts from
learning density, since they would bring no contribution
to the rendered image. To address this issue, we add an
additional loss that pushes the estimated pose of parts with
no associated density to the the pose of the largest part (i.e.
with the most density). We formulate this loss as follows:

Linit =
X

p

max(0, t� �p)|Tp � Tpmax |,

where t = 0.01 is a density threshold, �p is the density
associated with part p (which is the mean of all densities
for all sampled points, multiplied by the LBS weight) and
Tpmax is the pose of the part with the maximal density. For
the first phase, when a single part is learned, we use the
identity matrix in place of Tpmax .

Training. In the first phase, we train the model for
200 epochs with a batch size of 128 on 8 A100 GPUs.
To equally balance the contribution of each identity, each
epoch consists of a single frame randomly sampled from
each video in the dataset. In this phase, we decrease
the contribution of the Lbkg by a factor of 0.8 every 10
epochs. For the Cats [79] dataset, the method is trained
for 1000 epochs on a single A100 GPU with a batch size
of 16. In the second phase, we train the model for 1000
epochs using a batch size of 16 on 8 A100 GPUs. The
learning rate is decayed 10 times at 600 epochs and 900
epochs. Finally, to encourage the network to discover small
parts such as hands in TEDXPeople [17] dataset, during
this phase we also employ co-part segmentation obtained
without supervision from MRAA. The loss consists in the
cross-entropy loss between MRAA [55] co-parts and our
rendered LBS weights. As with Lbkg, this loss is decreased
by a factor of 0.8 every 10 epochs. For both phases, we use
Adam [27] with lr = 5e� 4 and � = (0.5, 0.999).

Inference. To embed test images, we rely on a two
stage procedure, similar to PTI [49]. First, we optimize the
embedding e for a particular image using the reconstruction
loss Lr used during training, and employing Adam [27]
with lr = 1e � 2. The optimization is run for 3000 steps,
and the learning rate is decayed by a factor of 10 every



750 steps. Similarly to StyleGAN2 [24], we add random
noise to the embedding to promote exploration. We select
an initial standard deviation of 0.5 for this noise and decay
it until reaching zero at step 1500. For the second stage, we
fine-tune all the generator parameters. To avoid forgetting
the useful geometry prior learned during training, we add
an additional geometry regularization loss:

Lgeo = |V̂ Density � V
Density|+ |V̂ LBS � V

LBS|,

where V̂
Density, V̂ LBS are the density and LBS weights

from the first stage, respectively. We also employ additional
data augmentation at alternate steps by applying random
Euclidean transformations for the source image, for which
we sample rotation angles and translations in the [�0.1, 0.1]
range. Note that, as our model assumes the background is
static, we only enforce this loss for the foreground using
the rough background mask obtained from the first stage.
We train for 500 steps in this stage. For optimization with
5 input frames, we increase the number of steps in the
second stage to 3000. Since 5 images may not fit into
a single GPU, we use a batch size equal to 2. Inverting
one image takes roughly 10 minutes on an A100 GPU,
while inverting five images takes roughly 20 minutes. Our
PnP-based part pose estimation algorithm introduces some
instability in the estimation of the distance of the part from
the camera. While this instability does not produce artifacts
when rendering the object from limited rotation angles,
it becomes more noticeable when rendering from extreme
camera angles. To mitigate such effects, we devise an
inference-time filtering strategy to smooth abrupt changes
in the estimated depth of each part. For each part, we
estimate the distance from the camera origin to the center of
the rendering cube. We then compute the mean of all these
distances for each part lp. Finally, we rescale the vector
from the camera origin to the center of the rendering cube,
such that they have the same length lp in all frames.

B. Dataset details
We employ three training datasets: VoxCeleb [38],

TEDXPeople [17] and Cats [79]. We adopt the Vox-
Celeb [38] preprocessing of FOMM [52], and preprocess
Cats [79] in the same way as [10, 58]. For TEDXPeo-
ple [17], we first download the videos listed in [17], then,
using the provided timestamps, select continuous chunks
of videos starting at the provided timestamp and lasting
at most 512 frames. In each chunk, we detect human
keypoints and bounding boxes for each frame using [69].
We clamp the predicted bounding box at the hip joints at
the bottom of the frame, then increase its size by a factor
of 1.2 so as to capture the subject’s full upper body, then
make it square. We process the video chunk frame-by-
frame, adding each processed frame to the current video
sample. If, in some frames, the human is not detected or the

bounding box moves significantly from the initial position,
we stop the current video sample and start collecting a new
sample at the next detection of a human. To further clean
the dataset, we discard video samples that are too short
(less than 64 frames), to small (less than 256 pixels on
any side), have significant background movement (detected
using simple L1 error on pixel values), have no movement
in foreground (which most likely indicate that the detected
human is a static image visualized during the presentation)
or have a width similar to the height (which indicates a
failure of the hip predictor). We select only views marked
as ”front” in the original annotations [17], and from each
YouTube video, we take at most three different samples.
Our final dataset consists of 40896 different samples from
17451 different YouTube videos.

C. Metric details
A critical aspect of 3D animation is the ability to syn-

thesize novel views of the observed target object. However,
evaluating this ability is challenging, as animation datasets
typically lack multi-view observations. We thus introduce
metrics that, given a triplet composed of a source frame, a
driving frame, and a result rendered under a target camera,
can quantitatively evaluate the quality of the rendered novel
view:

• Average Yaw Deviation (AYD): this evaluates whether
the object is rendered from the target camera perspec-
tive. Given the yaw angle between the camera and
the object in the driving frame ⇥d and in the rendered
frame ⇥r, and the yaw angle of the novel view camera
with respect to the original camera ⇥c, we define
AYD = |⇥d � (⇥c +⇥r)|

• Average Shape Consistency (ASC): this evaluates
whether the identity of the rendered object is the one in
the source frame. Given an identity code for the source
frame cs

s
2 RNcs and an identity code for the rendered

frame c
s

r
, we define ASC = |css�c

s
r|

Ncs

• Average Pose Consistency (APC): this evaluates
whether the object is rendered in the pose given by the
driving frame. Given a pose code for the driving frame
c
p

d
and a pose code for the rendered frame c

p

r
2 RNcp ,

we define APC =
|cpd�c

p
r |

Ncp

We obtain ⇥, cs and c
p in a way that is specific to the given

object category. For faces, we compute the head yaw angle
⇥ using the 6DOF head pose estimator 6DRepNet [19],
which we find robust to extreme head poses and possible
corrupted regions in the rendered frames. Given an image,
the model directly provides the estimated yaw angle, which
we convert to radians prior to the computation. To compute
c
s and c

p we use the DECA [13] 3DMM. We select this



model due to its robustness to large head rotations, its
fast, encoder-based inference, and its ability to disentangle
the head shape from the current expression. In particular,
we define c

s as the inferred Ncs = 100 FLAME [31]
face shape parameter, which encodes the identity of the
subject. We define c

p as the concatenation of the inferred
50 expression parameters with the estimated jaw rotation
in axis-angle representation for Ncp = 53, which together
capture the particular facial pose. We choose not to make
use of the estimated head yaw angle, since we find it less
robust than the one inferred from our adopted 6DOF head
pose estimator. For human bodies, we fit the SMPL [34]
body model to each frame using 3DCrowdNet [9]. We
choose 3DCrowdNet due to its fast inference time and its
robustness to partially-occluded subjects which are frequent
in the TEDXPeople [17] dataset, where only the upper half
of the body is typically present in the frame. 3DCrowdNet
requires a set of 2D human body keypoints to be detected
for each frame. We first detect person bounding boxes using
Faster R-CNN [47] and use VitPose [71] to detect the 2D
human body keypoints, which we find to work robustly
even in the presence of artifacts in the images. Given the
fitted SMPL model, we define c

s as the inferred Ncs = 10
body shape parameters, and c

p as the concatenation of the
inferred angles for a selected set of 13 joints in axis-angle
representation corresponding to the joints situated above
the ‘belly button’ joint for a total of c

p = 39 elements.
Selection of the joints ensures that joints that are typically
not present in the TEDXPeople dataset, and thus cannot be
reliably estimated, will not negatively affect the precision of
the evaluation. We extract the yaw angle ⇥ by transforming
the root joint axis angle rotation inferred by the model into
the corresponding rotation matrix M = MyMxMz , and
extract the yaw angle ⇥ of the My component representing
the y-axis rotation matrix as follows:

pitch = arcsinM1,2

cos(⇥) =
M2,2

cos(pitch)

sin(⇥) =
M0,2

cos(pitch)

⇥ = arctan2(sin(⇥), cos(⇥)),

where the case of cos(pitch) = 0 is disregarded, since in
practice we never render objects from high-pitch angles.

We now define the evaluation protocols followed for the
animation and novel view synthesis tasks. For the animation
task, we consider each test set video and select the first
frame of each video as the source frame. We consider as
driving frames five video frames, equally spaced along the
duration of the test video. We then generate the object in the
source frame in the pose of each driving frame under novel
views, produced by rotating the object with the following
⇥ angles: 0,± ⇡

12 ,±
⇡

6 ,±
⇡

4 . The triplets built from all

combinations of source, driving and rendered frames are
used for the computation of AYD, ASC and APC. For the
novel view synthesis, we consider as source and driving
frame the same, first frame of each video. This allows pure
evaluation of the novel view synthesis capabilities of the
method. We render each frame under the set of 256 linearly
sampled ⇥ angles in the range [�⇡

2 ,+
⇡

2 ] and compute
AYD, ASC and APC using all the available frame triplets.

D. Baseline details
MRAA and FOMM. MRAA and FOMM rely on affine

transformations to transfer motion. Thus, in order to
perform novel view synthesis a natural idea would be to
modify these affine transformations such that they represent
the object in the novel view. We achieve this with the
following procedure. First, near each region center, we
sample 4 additional keypoints in a small distance = 0.05
forming a cross centered around the central keypoint for the
region. The region center and these additional keypoints are
then lifted to the 3D space using a depth map obtained from
the driving image with off-the-shelf depth estimator [12].
As we need to recover depth for the object in the pose of
the frame for which to perform novel view synthesis, we
use absolute depth for animation to ensure the rendered
frame pose is the same as the driving frame. These points
are then projected to the target view using the desired
camera parameters. Finally, we estimate a new affine
transformation from these projected points. Note the off-
the-shelf depth estimator only provides relative depth, and
it is thus not possible to utilize it directly. To overcome
this issue, we leverage depth obtained from our method and
find a linear mapping between our depth and off-the-shelf
depth. This linear mapping is consists of dscale and dshift

parameters and can be find in closed form:

dscale =
Cov(d, d̂)

V ar(d̂)
,

dshift = E [d]� dscaleE[d̂],

where d is the depth map from our method, d̂ is the off-the-
shelf depth map, E is sample mean, V ar is sample variance,
and Cov is sample covariance.

LIA. LIA expresses animation as navigation inside a
learned latent space. Given an embedding zs in this latent
space for the source image, animation is expressed as zd =
zs + w = zs +

P
aidi, with zd expressing the latent

code corresponding to the animated result and vector w

expressed as the summation of a set of learned motion
directions d multiplied by corresponding magnitudes a,
which form an orthogonal basis of the latent space. The
set of learned motion directions represents the main types
of motions performed by the objects. Interestingly, we
find that for the VoxCeleb dataset, d2, the second of such



VoxCeleb TEDXPeople

Method AYD# ASC# APC# AYD# ASC# APC#

FOMM [52] 0.801 0.145 0.194 0.639 0.029 1.14
MRAA [55] 0.760 0.133 0.177 0.686 0.022 0.861

LIA [64] 0.188 0.132 0.198 - - -
Our 1 frame 0.155 0.119 0.171 0.248 0.023 0.941
Our 5 frame 0.153 0.126 0.184 0.244 0.024 0.959

Table 3. The results of generating novel views of the first frame of
each video sequence. Camera angles range from �90� to +90�.

directions, is correlated with y-axis head rotation. While
this movement is undesirably entangled with other motion
components such as x-axis head rotation, we exploit this
finding to produce novel views. Since no immediate corre-
spondence between magnitude a2 added to such direction
and ⇥ exists a priori, we build a linear model mapping
changes in ⇥ between the source and driving frame with a2.
To build such a linear model, we consider the first frame of
each video and produce novel views using values of a2 in
the range of [�17,+17] degrees. For each generated novel
view, we evaluate the corresponding changes in ⇥ between
the source and driving frame using 6DRepNet [19] and use
such data to fit our linear model a2 = 7.453⇥. Given a
desired ⇥ angle, we leverage the linear model to devise the
magnitude a2 and produce znovel = zd + a2d2, which is
decoded to the frame under the novel view. Note that since
the linear model directly optimizes the ⇥ error on the test
set, we expect the AYD metric produced for such baseline
to be biased toward lower values.

E. Novel view synthesis
In this section, we evaluate the capabilities of the anima-

tion methods to perform novel view synthesis without ani-
mation. To this end, we simply rotate the image along the y
axis on the set of angles from �90� to +90�. The results are
provided in Tab. 3, and confirm the findings from Sec. 4.2.
While MRAA has favourable ASC and APC errors, it has
very high AYD. This behavior is expected, because the
method is simply performing a translation of the subject,
rather than rotating it according to the provided yaw angles.
This ensures the pose and identity remain preserved, at the
cost of performing poor novel view synthesis. LIA, on the
other hand, has a low AYD, while ASC and APC are high,
which confirms that LIA has entangled latent directions that
prevent novel view synthesis without significantly altering
the pose and identity. Our model achieves the best AYD,
which suggests that it performs the most accurate camera
manipulations.

F. Canonical visualization
In order to better demonstrate the representation learned

by our model, we visualize some of the training identities
in the canonical pose, i.e. where Tp is the identity matrix

(a) VoxCeleb [38] (b) TEDXPeople [17]
Figure 6. Visualization of canonical spaces.

for all parts. Note that, since there are no prior assumptions
on how the object should be placed in the rendering cube,
parts seen from the camera with identity matrix extrinsics
may be arbitrary. Thus, we select the camera from which
objects will look reasonable. Note that Tp is still the same
for all parts and all objects. The visual results are presented
in Fig 6, which clearly shows that all objects have the same
pose, which is a crucial property for animation.

G. Synthetic

Depth DepthImage Image

(a) Khan et al. [25]

(b) SURREAL [60]

Figure 7. Visualization of predicted depth for synthetic datasets.
We show the input image and the depth predicted by our method.

To further evaluate the quality of the learned geometry,
we ran experiments on images from two synthetically
rendered datasets providing ground truth depth: 1.) that of
Khan et al. [25], which provides high-quality, portrait-style
facial images; and 2.) SURREAL [60], which provides
full-body renderings of animated subjects. We use 112



image for faces and 60 images for bodies, cropped such
that they roughly correspond to the cropping used in the
respective real datasets used for training. These datasets
contain subjects with widely varying identities, poses,
hairstyles, and attire, rendered in different environments
and lighting conditions. However, for these experiments
we did not rely on synthetic data for training, instead using
models pretrained on 2D images from VoxCeleb [38] or
TEDXPeople [17] for faces or bodies, respectively. Despite
the domain gap between our training and evaluation data,
we are able to obtain high-quality depth estimates for these
synthetic renderings using models trained only on real,
in-the-wild images. Given a synthetic input image, we
invert it, then compute the Pearson correlation coefficient
between our method’s inferred depth and the ground truth.
For these experiments, as we are only concerned with the
geometry of the target object, we masked out the depth
for background regions, computing the correlation only
between the depths of foreground pixels. We compare our
predicted depth with the general purpose state-of-the-art
depth predictor Omnidata [12]. The depth correlation for
Omnidata is 0.602 for faces and 0.470 for bodies, while
for our method they are 0.793 and 0.568, respectively. In
Fig. 7, we show the image along with the reconstructed
depth. These results demonstrate that our unsupervised
method learns meaningful geometric representations, even
for significantly out-of-distribution inference data.

H. Limitations
Our model addresses, for the first time, the task of

unsupervised 3D animation. While our model obtains
compelling results on this challenging task, here we note
some limitations:

• Our method assumes the object can be represented
with a voxel cube of size 643. We notice that
when generating novel views involving large camera
displacements from the original pose, some seam-like
artifacts may appear. We believe they are due to the
small size of the voxel cube and errors in predicting
precisely the distance of the part, which could lead to
a slight displacement between different parts.

• For each test identity, our model makes use of an
optimization-based procedure to compute the respec-
tive identity embedding and fine-tune the generator.
This procedure increases the inference cost of our
model, but needs to be performed only once for each
test identity, thus the cost of the procedure is amortized
when producing a large number of frames.

• Our model renders frames at a resolution of 256⇥256,
which is lower than the ones typically supported by
state of the art 2D animation methods. This is a

common limitation of 3D methods based on volumet-
ric rendering, and we expect continuous progress in
efficient volumetric representations and rendering to
enable the generation of higher resolution images.

• Our method can learn geometry only from the views
that were observed in the training dataset, thus, for
the back side of the face in VoxCeleb [38] and the
back side of the body in TEDXPeople [17], no precise
geometry is learned.

I. Failed Experiments
Canonical space representation. During our initial

experiments we tried many different representations for
canonical space: Triplanar [5], MLP [37], CP and VM
decomposed cubes [7]. However, we found that decom-
posed solutions such as Triplanar [5] and VM [7] are biased
towards flat geometry, while an MLP [37] is extremely
slow. Note that the Triplanar [5] representation also utilizes
a small MLP, thus in our experiments it was slower than
directly sampling our Voxel cube.

Pose prediction. Before reaching the PnP formulation,
we tried many different approaches for pose prediction.
First, we started with Direct approaches, and we tested sev-
eral architectures and rotation representations [83]. How-
ever, all of them failed to produce meaningful geometry.
We also tried an optimization-based approach for motion,
i.e. having a pose parameter for each frame in the dataset.
While this produced decent results for a single video, when
the number of frames scales to millions, this approach
quickly becomes infeasible.

Different PnP. We tested several different PnP imple-
mentations. We found that implementations based on
declarative layers [8,16] are extremely slow, and using them
in our setting would have been unfeasible. We also tested an
implementation from the Kornia Library [48] that is based
on DLT. However, it did not produce any meaningful results
and produced divergence of the model. Our final choice
was the EPnP [28] implementation from Pytorch3D [44].
However, we would like to note that it was only working
in PyTorch 10.1 and not PyTorch 11, where it was not
converging. We discovered the problem was the initially
unstable gradients of the pinverse function in the newer
version. We think that this instability can be solved with
better initialization for the 2d points, however we left this
investigation for future work.

Depth and normal supervision. To help discovering
the geometry we also tried to utilize depth and normal
supervision from an off-the-shelf predictor [12]. Note that,
because the normals supervision require computation of
second order derivatives and we rely on voxel sampling with
grid sample, we need a second derivative of grid sample,



which is not implemented in PyTorch3. Thus, we develop
a custom cuda kernel for the second derivative. While the
depth and normal supervision helps to improve results for
one-phase training, we found it to be unnecessary with two-
phase training.

Upsampler. We render images in full resolution, how-
ever in prior experiments we utilize an upsampler. While
this method works faster and consumes less memory, it pro-
duces less detailed geometry and worse view consistency.

Different multipart representations. We also tried
two different representations for describing objects with
multiple parts. The first had a shared radiance V

RGB

volume, but a separate density for each part, while the
second used different radiance and density volume for each
part. Both of these strategies produce reasonable results.
However, for them it is much harder to discover a large
number of parts, and they usually degrade to solutions with
only one or two parts being used.

Few shot NeRF regularization. We also tested several
few-shot NeRF regularization techniques: entropy loss on
the NeRF weights [26], loss on the weights from MiP
NeRF [2], surface normals regularization [61] and warping
loss from MVCGAN [80]. We found that all of them are
unnecessary with our two phase training strategy.

Discriminator. To regularize the novel views, we also
try to employ a Discriminator, similarly to 3D-GANs [5,
58]. In more detail, we first predict the pose of the object
and then try to rotate this pose to generate the object in
the novel view. This image is subsequently passed to the
discriminator. However, we found it hard to find proper
rotation ranges, thus the discriminator reduced the quality
of the geometry in our experiments.

J. Ethical considerations
Dataset usage. The primary datasets used in our

experiments, VoxCeleb [38] and TEDXPeople [17], con-
tain publicly available videos of notable figures in public
venues, e.g. celebrities giving interviews and speakers
giving presentations to large audiences. These datasets have
been released by and employed for prior academic research,
e.g. the works we use for our comparisons and evaluations.

Other datasets, such as Khan et al. [25] and SUR-
REAL [60] which are used for our ground-truth depth
inference evaluations, contain realistic but synthetic images
rendered from 3D models of human faces and bodies,
respectively. SURREAL [60] uses body scans and motion
capture sequences generated from 3D capture of the appear-
ances and performances of subjects who consented to have
this captured and released for academic purposes. Khan et

al. [25] contains facial images generated by perturbing
characteristics such as facial identity, hair and clothing

3https://github.com/pytorch/pytorch/issues/34704

for models in a standard 3D modeling and rendering
framework, and thus do not correspond to any particular
person whose identity may be at risk of being revealed.
Each of these datasets are both publicly available and
have been used for prior academic works. As such, there
are no particular concerns about violating the privacy or
anonymity of our test subjects.

Potential for bias in synthesis results. As with other
data-driven methods for performance-driven animation, the
amount of variation in characteristics such as gender, age,
body type, and ethnicity that can be handled by our methods
with the source and driving subjects while producing plau-
sible synthesis results is dependent on the amount of such
variations contained in the dataset. While the variations
in the real and synthetic images used in our experiments
are limited by those in the aforementioned datasets used in
our evaluations, e.g. in typical celebrity videos and TEDx
presentations, our method has no particular limitations
towards such subjects, and thus could be deployed on
other datasets containing different identity characteristics.
Deploying this approach in a manner which is fair and
robust with respect to such variations for non-academic
purposes, such as commercial applications, would require
employing a dataset that is appropriately representative of
the possible target identities, and evaluating the results
to ensure consistent behavior across these demographics.
However, for the academic evaluations presented here, our
evaluations suggest that our approach works as expected
given the datasets we use, and thus could generalize to
other training datasets fairly easily. Finally, as our approach
only relies on unconstrained video sequences for training,
acquiring the data needed to adapt to new subjects is
fairly straightforward, provided that the appropriate video
sequences can be collected for training. As such, there are
no particular concerns related to unfair bias in our approach.

Possibly misuse. As with other works in the domain of
realistic, performance-driven animation, our work carries
with it the possibility of use for deceptive activities, e.g.,
creating plausible videos of public figures as misinforma-
tion to advance a political agenda. However, we maintain
that, while this is clearly a valid concern for the near future,
developing and studying such technology in public forms
such as this work raises awareness of this potential, and with
it the skepticism of viewers towards potentially misleading
videos. Furthermore, publicly describing our work and
results allows for the advancement of forensic methods to
identify when such manipulations have occurred. We thus
believe that our work helps to prevent the secretive devel-
opment and deployment of these techniques for malicious
ends which are not known or detectable either to average
media consumers or professional forensic analysts.
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