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In this supplementary document, we discuss additional
details about our method Panoptic Lifting. Specifically.
in Section 1 we give additional details about our test time
augmentation algorithm. A comparison of rendering per-
formance of our method compared to the baselines is re-
ported in Section 2. We also provide implementation de-
tails of our method and the baselines (Section 3), the data
used for experiments in the main paper (Section 4), and lim-
itations (Section 6). Finally, we report additional metrics,
scene Segmentation Quality (SQscene) and Retrieval Qual-
ity (RQscene), in Section 5.

1. Test-time Augmentation for Mask2Former
In this section we describe the test-time augmenta-

tion strategy we adopt to obtain improved panoptic seg-
mentation masks and per-pixel confidence scores from
Mask2Former [2].

1.1. Test-time Augmentation

We run a pre-trained Mask2Former network on multiple
augmented versions of each input image, using the follow-
ing set of transformations: horizontal flip, rescale, contrast,
RGB-shift, random gamma, random brightness & contrast,
median blur, sharpen, and arbitrary combination of the pre-
viously mentioned augmentations. For each transformation,
we intercept the Mask2Former outputs before its “panop-
tic fusion” stage, i.e. right after the transformer and pixel
decoders (see Sec.3 of [2] for details). These outputs con-
sist of a set of candidate segments, represented as 2D soft
masks paired with probability distributions over the classes.
After transforming the candidate segments back to the orig-
inal image resolution and orientation, our next objective is
to fuse them into a single, coherent panoptic segmentation.

1.2. Fusing Mask2Former predictions

We denote the candidate segments predicted from
all augmented versions of the image as a set of pairs
(mi,pi), i = 1, . . . , N , where mi(x, y) ∈ [0, 1] is the pre-

dicted probability of pixel (x, y) to belong to segment i,
and pi = [p1i , ..., p

C
i ] is the segment’s predicted probabil-

ity distribution over C classes. In the following, we de-
scribe a mechanism to combine these predictions into a sin-
gle panoptic segmentation with associated confidences, fol-
lowing three steps: segment clustering, cluster aggregation
and panoptic fusion.

Segment clustering. We build a graph (V, E), where V =
{1, ..., N}, and E = {(i, j)|i, j ∈ V ∧ s(i, j) ≥ θ}. The
matching function s(i, j) is defined as a “soft-IoU”

s(i, j) =

∑
x,y min(mi(x, y),mj(x, y))∑
x,y max(mi(x, y),mj(x, y))

,

and θ is a matching threshold (e.g. θ = 0.5). In other words,
we add an edge between two segments if their soft-IoU is
greater than θ. By finding the connected component of this
graph, we partition the segments into clusters K ⊂ V .

Cluster aggregation. After clustering the segments, we de-
fine a new set of masks and class probabilities, this time as-
sociated with clusters instead of segments. We denote these
as m̂K(x, y) and p̂K = [p̂1K, ..., p̂

C
K], respectively, and com-

pute them by simply averaging the masks and probabilities
of all segments belonging to each cluster

m̂K(x, y) =
1

|K|
∑
i∈K

mi(x, y) ,

p̂K =
1

|K|
∑
i∈K

pi .

Panoptic fusion. Given this new set of masks and class
probabilities, we fuse them into a single overall panoptic
prediction with an algorithm akin to the one used in the final
stage of [2]. Specifically, we follow these steps:

1. For each cluster K, we determine the most likely class
c∗K = argmaxc p̂

c
K, and the corresponding probability

p∗K = maxc p̂
c
K.

2. We scale K’s mask by p∗K to obtain m̄K(x, y) =

1



Method Time to render 2048 rays

PNF [5] 119.7 ms
DM-NeRF [11] 66.5 ms
Semantic-NeRF [12] 65.7 ms
Panoptic Lifting (Ours) 13.1 ms

Table 1. Time taken to render a batch of 2048 rays on a NVIDIA
RTX A6000 GPU.

Method HyperSim [8] Replica [10] ScanNet [3]

Mask2Former [2] 50.52 50.10 43.6
Panoptic Lifting (Ours) 66.84 63.79 60.4

Table 2. Conventional PQ scores on novel views from the test set.

p∗Km̂K(x, y).

3. We assign image pixels to clusters with the rule: (x, y)
is assigned to k∗(x, y) = argmaxK m̄K(x, y), and its
confidence is set to s(x, y) = maxK m̄K(x, y).

At the end of this process, each pixel will have a class
c∗k∗(x,y) and a confidence s(x, y). Furthermore, pixels of
thing classes can be partitioned into instances according to
their cluster assignment k∗(x, y).

2. Rendering Performance
Tab. 1 compares the time taken to render a batch of 2048

rays for each method on an NVIDIA RTX A6000 GPU. Due
to the hybrid representation from TensoRF, our model de-
livers a faster rendering performance compared to the base-
lines.

3. Implementation Details
3.1. Panoptic Lifting

Panoptic Lifting uses TensoRF [1] for modeling the
scene density and radiance. Specifically, we use the Vector-
Matrix (VM) decomposition, with number of density and
appearance components set to 16 and 48 respectively. The
starting grid resolution is set to 1283 and goes upto 1923 at
the end of the optimization. 27 color features are decoded
with a tiny 2 layer MLP with positional encoding with 2
components to encode the view direction and the features.

To model the semantic class distribution and surrogate
identifiers we make use of two small view-independent
MLPs. The semantic MLP has 5 layers with a width of
256 and outputs a probability distribution over the target
classes for any given input position. The surrogate identi-
fier is a 3 layer MLP which generates a distribution over
max k identifiers (set to 50 in our experiments). Neither of

these MLPs use positional encoding. We choose to go with
MLPs instead of Vector-Matrix decompositions for seman-
tics and surrogate identifiers for memory size constraints.
Our model is trained with a batch of 2048 rays, with a learn-
ing rate of 0.0005 for MLPs and 0.02 for the TensoRF lines
and planes.

3.2. Baselines

We use the publicly available Mask2Former [2] code and
models, without any retraining or fine-tuning. For all meth-
ods that use Mask2Former instance labels (including ours),
instance counts are renumbered to be distinct across frames.
For Semantic-NeRF [12] and DM-NeRF [11], we use their
publicly released code. Since DM-NeRF outputs the labels
as abstract instance identifiers, we create a map from in-
stance to class using the instance’s majority class across the
train set as its assigned class.

Since Panoptic Neural Fields [5] does not provide a pub-
lic implementation, we re-implement it based on details
from the paper. We do not use their prior-based initializa-
tion since it requires additional 3D datasets for the instanced
classes. In the original implementation, PNF uses a monoc-
ular 3D detector, which is essential when dealing with dy-
namic objects varying across frames. However, since the
task here deals with static scene, it is more fair to use a
multi-view detector for getting the bounding boxes. We use
a state-of-the-art multiview detector [9] pretrained on Scan-
Net for getting object bounding boxes for PNF in our ex-
periments. Note that for getting a reasonable 3D detector
performance, it is required that the camera poses are scaled
and centered similarly to the original ScanNet training data.
We perform these pose corrections for Replica [10], Hy-
persim [8] and in-the-wild scenes. Since this correction re-
quires an estimate of scale, we use for pose correction the
ground-truth depth from Replica and Hypersim, and NeRF
optimized depth for scenes in the wild. We further show
result with a variant of PNF that uses ground-truth detec-
tions, except for in-the-wild data where not ground-truth is
available.

All models (including ours) are trained with
Mask2Former [2] generated labels.

4. Data
Tab. 4 shows the scenes and their corresponding num-

ber of frames. The available posed images are split into
75% views for training and 25% intermediately sampled
test views. Note that for each of the datasets, the ground-
truth semantic and instance labels are only used for eval-
uation, and are not used for training or refinement of any
models.

Since the original model (swin large IN21k) was trained
on COCO [7], and the labels for evaluation come from dif-
ferent datasets, we map the Mask2Former predictions as



Method
HyperSim [8] Replica [10] ScanNet [3]

SQscene ↑ RQscene ↑ SQscene ↑ RQscene ↑ SQscene ↑ RQscene ↑

DM-NeRF [11] 62.06 55.45 58.68 47.68 53.26 46.13
PNF [5] 55.33 47.51 53.62 44.10 62.96 50.73
PNF [5] + GT Bounding Boxes 68.23 53.35 62.15 50.81 70.01 55.87

Panoptic Lifting (Ours) 70.35 64.32 69.10 63.61 73.50 64.95

Table 3. SQ and RQ metrics for on novel views from the test set.

Dataset Scene # Frames

HyperSim ai 001 003 100
HyperSim ai 001 008 100
HyperSim ai 001 010 300
HyperSim ai 008 004 63
HyperSim ai 010 005 100
HyperSim ai 035 001 200
ScanNet scene0050 02 874
ScanNet scene0144 01 678
ScanNet scene0221 01 780
ScanNet scene0300 01 929
ScanNet scene0354 00 563
ScanNet scene0389 00 708
ScanNet scene0423 02 855
ScanNet scene0427 00 659
ScanNet scene0494 00 740
ScanNet scene0616 00 758
ScanNet scene0645 02 726
ScanNet scene0693 00 866
Replica office 0 900
Replica office 2 900
Replica office 3 900
Replica office 4 900
Replica raw 900
Replica room 0 900
Replica room 1 900
Replica room 2 900
In the wild office 1100
In the wild bed room 1100
In the wild meeting room 1100

Table 4. Scenes used for evaluations in our experiments. Note
that the in the wild scenes are only used for qualitative evaluation
(shown in the supplementary video) since ground truth labels are
not available for a qualitative comparison with baselines.

well as the ground-truth labels across all the datasets used in
our experiments to ScanNet 21 classes (Tab. 5 left). For in
the wild scenes, we use 31 ScanNet classes listed in Tab. 5
(right).

Class Type

wall Stuff
floor Stuff
cabinet Stuff
bed Thing
chair Thing
sofa Thing
table Stuff
door Stuff
window Stuff
counter Stuff
shelves Stuff
curtain Stuff
ceiling Stuff
refridgerator Thing
television Thing
person Thing
toilet Thing
sink Thing
lamp Stuff
bag Thing
otherprop Stuff

Class Type

wall Stuff
floor Stuff
cabinet Stuff
bed Things
chair Things
sofa Things
table Stuff
door Stuff
window Stuff
counter Stuff
shelves Stuff
curtain Stuff
ceiling Stuff
refridgerator Things
television Things
person Things
toilet Things
sink Things
lamp Stuff
bag Things
bottle Things
cup Things
keyboard Things
mouse Things
book Things
laptop Things
blanket Stuff
pillow Things
clock Stuff
cellphone Things
otherprop Stuff

Table 5. Classes and their type (stuff or thing) for dataset experi-
ments (left) and in the wild experiments (right).



5. Additional Results
Tab. 2 reports the conventional PQ scores between our

method and Mask2Former [2]. As mentioned in the main
paper, this does not take into account the instance consis-
tency across the scene, since matching between ground-
truth and predicted instances is done on a per-frame basis.
We further report SQscene and RQscene in Tab. 3.

6. Limitations
Panoptic Lifting shows considerable improvements over

the state of the art; however, several limitations remain.
Our method uses predictions from a pre-trained panoptic
segmentation model, and hence is limited to classes with
which the original model was trained. In this context,
it would be interesting to explore open world segmenta-
tion [4, 6] with self-supervised instance clustering. Fur-
ther, unlike PNF [5], we cannot handle per dynamic ob-
jects and can only work with static scenes. Similar to other
NeRF-based approaches, our method is currently run off-
line due to lengthy pre-processing for pose estimation, 2D
segmentation inference, and neural field optimization; here,
a promising avenue would be to integrate our approach with
state-of-the-art SLAM approaches that run in real-time.

Furthermore, consistently mislabeled 2D instances will
translate to incorrect 3D panoptics (e.g., supplementary
video at 3:07, stacked chairs are predicted as a single in-
stance since 2D segmentation consistently predict them as
such). Indeed, similar to existing NeRF-based works, we
need many frames to get good depth estimates, in the ab-
sence of which panoptic fusion does not work well. We also
do not incorporate recent improvements from the NeRF lit-
erature like robustness to camera pose noise, anti-aliasing,
background modeling, etc. Consequently, our method di-
rectly leverages improvements of 2D panoptic segmentation
and NeRF methods.
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