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We first provide the least squares and robust 3D registration problems in Eqns. SI and S2, respectively, for convenience.
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A. Weighted Umeyama Method
We restate the weighted Umeyama problem here as follows:
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In Line 5, Algo. 1 of the main paper, we have used the weighted Umeyama method (a variant of the original Umeyama’s
[5]) for minimizing the weighted least squares cost, Eqn. S3. Here, we describe the method in Algo. S1.

Algorithm S1: Weighted Umeyama Method
Input: {a;}’s, {b;}’s, weights ¢;’s
Output: Rotation R, Translation t

1 Initialization: No initialization for R, t required.

/x 3x N matrices A;, B; x/
2 Ay = [Vpar, Vépaz, ..., Vénay]
3 By = [Véiby, Véoba, ..., Vénby]
/* weight vector w */
4W:|:\/¢17 V¢27 B \/¢N:|
s K=1- v“’v‘ﬁjv // Normalization matrix
A KB/
6 z:ab = Tw'w
7 [U,D, V] = svd(Xap) // B =UDVT
8
S — I ifdet(Xa5) >0
) diag(1,1,...,1,—1) ifdet(Se) <0

10w R= USVT, t = w‘lrw(Al — RBl)W




B. Proofs of Theorems 3.1 and 3.2
Theorem 3.1 The gradient g1,s¢ and Hessian Hy s¢ of the least squares cost (Eqn. S1), at the point (R, t), are given by:
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where p; = a; —t,r; = a; — Rb; — t, and I is the 3 X 3 identity matrix.

Proof. Consider a term corresponding to a single observation in Eqn. S1:
1
fi(R,t) = Slai — Rb; — t||* (87

where R € SO(3) and t € R3. For ease of notation, we drop the subscript i wherever applicable because we are referring only
to a single observation i in this proof. SO(3) and R? are Riemannian manifolds with the natural geodesic metric on SO(3)
(Refer to [2] for additional information on properties of SO(3)) and the standard inner-product on R? as the Riemannian
metrics on the respective manifolds. Therefore, the product manifold SO(3) x R? admits a canonical product Riemannian
metric. This leads to the following expression of the Riemannian gradient of the least squares cost (Eqn. S1) computed at the
point (R, t):
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where gradg f is the Riemannian gradient evaluated at R, which is defined in the following manner (refer to [1,2]). Let
expg : R* — SO(3) denote the exponential map at a point R € SO(3) defined by expg ([x],) = Rexp([x], ). Given a
function f : SO(3) — R, the gradient (gradg f) and Hessian (H) of the function f at the point R are defined as the gradient
and the Hessian of the function f o expg : R® — R, evaluated at x = 0. We denote f(x) := (f o expg )(x).

f(x) = f(Rexp([x],),t) = %Ha — Rexp([x],)b— t)|? (S9)

(gradr f(R,t), 1) = (Vi f(%X)|x=0, @) = Da f(x)|x=0 (S10)

where (-,-) is the standard Euclidean inner-product in R3, D,, f(x) is the directional derivative of the function f(x) along
the direction 1 at the point x (where 0t € R? s.t. ||a| = 1).

Daf(%)|x—0 = (df (Sﬁ)> (SIi1)
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ds

Considering ¢(s) = f(stt) in Eqn. S11 and using it in Eqn. S10, we get

(gradr f(R,t),0) = ¢'(8)]s=0 = ¢'(0) (S12)



The derivative, ¢'(0), is computed as follows:

a(5) = glla~ Rexp([sa] )b — t]’
¢'(s) = (a—Rexp(s[a], )b — t)T(— cos(s)R [1]
=] (—cos(s)R [a], b; —sin(s)R [a]> b;)
=¢'(0)=-r'R[a], b
=r'R[b], 1
= (gradr f(R,t),0) = I‘—'—R[b]X 11
= (gradrf(R,t)) a=r R[b], 0
= gradr f(R,t) = —b], R'r (S13)
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The gradient of f(R,t) with respect to t € R? is given by

gradg f(R,t) = Vi f(R, t)
= V¢ (la; — Rb; — t]|%)
—r (S14)

Therefore, the gradient can be written as (from Eqns. S13 and S14):
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The Hessian of the cost function f(R,t) is given by:

Hrr HRt] (S16)

H=Hrsq: = |:H11;t Hy;

where Hyp is the Hessian of the function f(R, t) with respect to R € SO(3). By definition, Hrp is equal to the Hessian
of the function f(x) evaluated at x = 0. Therefore,

Hpp = Vif(x)
= J(Vxf(x)) where J is the Jacobian.

The expression for V, f(x) is given as follows:
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where r(x) = (a— Rexp ([x], ) b —t). Note that Vi f(x)|x—0 = gradr f(R,t) = — [b], R r. The Hessian of the

function f (x) or the Jacobian of the gradient V f(x) with respect to x is given as follows. As the expressions are very
lengthy, we provide the Jacobian for each of the terms in the order that they are written:

1. Term corresponding to (—%xxT [b]., RT> r(x):
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6. Term corresponding to (—waTRT) r(x):
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Evaluating the sum of all the terms at x = 0 gives:
1 1
Hir = (p' Rb)I — 5prR — 5RprT (S17)
Evaluating the Jacobian of V f (x)|x=0 with respect to t gives Hg; which is as follows:
Hp, =Jo(—[b],R'r)
=Je(~ b, R (a—1))
=[b] R’ (S18)
In a similar manner, we can derive H;p = H}T%t = —R|[b] -~ The Hessian term Hy; can be obtained by taking the Jacobian

of grads f (R, t) with respect to t and is given by:

H; = Ji(gradi f(R, 1))
=J¢ (-1)
=Je(—(a—1t))
=1 (S19)



Therefore, the Hessian matrix of the least squares cost (Eqn. S1) is given by (from Eqns. S17, S18 and S19) :

_[(P"Rb)I-ibp'R—-1R"pb" [b] R"
Hisg = { “Rib), I (S20)
O
Theorem 3.2 The Hessian H of the robust Umeyama cost (Eqn. S2), at the point (R, t), is given by:
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Proof. The robust cost (Eqn. S2) is given by:
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Taking the gradient, we get
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We denote f; = f;(R,t) = %|r;|?, from Eqn. S7. Then,
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Using this in Eqn. S24, we get,

H = ZV (il - ¥ esll) - o (lleal) + Zp’ (lell) - 7% (el

va’rﬁf )+ XA ) | gV S
B el) i)Y o s AUel) s
‘Z{( N EE )Vfl VI szz}

%

gLSQ gl S0
_ Z ( 17”263 + miHLSQ,z) lasgrsq: = Vfiand Hpsg, = V2 fi]



Dataset Time Taken (ms)
FGR GORE SE3Reg TEASER++ GNCp (Ours)
armadillo | 4.66 0.26 1.56 0.41 6.99
bunny 4.63 0.25 1.53 0.45 6.83
buddha 4.66 0.27 1.53 0.47 7.04
dragon 4.95 0.33 1.59 0.46 7.86

Table S1. Computational time (mean taken over all instances) on Type-1 synthetic datasets for pouy = 50%.

Dataset Time Taken (ms)
FGR SE3Reg TEASER++ GNCp (Ours)
armadillo | 450.34  97.25 2240.19 160.65
bunny 45577  97.63 2222.02 160.6
buddha | 44133  97.25 2308.69 155.18
dragon | 45098  99.49 2233.7 158.63

Table S2. Computational time (mean taken over all instances) on Type-2 synthetic datasets for pouu = 50%.

Dataset Factor of increased time taken
FGR SE3Reg TEASER++ GNCp (Ours)
armadillo | x97 X 62 x 5464 x23
bunny x 98 x 64 x4938 x24
buddha x95 x 64 x4912 x22
dragon x91 x63 x4857 x20

Table S3. Factor of increased computation time (mean taken over all instances) from Type-1 to Type-2 datasets for poyu = 50%.

Therefore, the Hessian of the robust Umeyama cost (Eqn. S2) is given by:

815Q.i8150.i
H = 2228 Hso.
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C. Computation Time on Synthetic Datasets

In Sec. 4.1 of the main paper, we presented the results on synthetic datasets. Here, we show the computation time for
the two synthetic datasets. It can be seen, from Table S1, that for Type-1, which is easier to solve due to small input size
(N = 100 matches) and low noise (n = 0.01), RANSAC based method i.e. GORE takes the least time. However, for a
relatively hard dataset i.e. Type-2, (N = 10000 matches, n = 0.1), the computation time for GORE is very high (of the
order of hours), but M-estimation based methods are much faster. In Table S2, it can be seen that our method (GNCp) is
slightly worse than SE3Reg, with TEASER-++ taking the highest computation time. In Table S3, we compare the increase in
the computation time factor from Type-1 to Type-2. It can be seen that our method has the least increase in the time factor
compared to other methods when the problem gets harder to solve.

D. Visual Registration Results

In Fig. 4 of the main paper, we presented visual results for the alignment with different methods on point clouds with low
overlap. In Fig. S1, we show the zoomed visual results on all the methods for the same instance. It can be seen that our
method registers the point clouds correctly compared to other methods.

E. Results on 3DLoMatch Dataset

The 3DLoMatch [3] dataset has a very small inlier fraction (< 50%) in many instances as shown in past works [3,4].
Our method focuses on minimization of a robust cost which does not involve additional preprocessing/pruning to reduce the



(a) FGR (b) SE3Reg (c) TEASER++

(d) GNCp (Ours) (e) Ground Truth

Figure S1. Two point clouds (red and green) with a low overlap in the MIT Lab sequence of 3D Match dataset. Our method registers the
point clouds correctly compared to the ground truth reference.

weightage of outliers. As stated in the main paper, minimization of robust cost is reasonable to perform only when the global
minimum of the robust cost is close to the ground truth. However, we observe that, only in = 60% of all the 1781 instances in
3DLoMatch, the global minimum is close to the ground truth (i.e., the rotation and translation deviation is less than 15° and
0.3 metres respectively). The mean rotation error (MRE) and the mean translation error (MTE) for the successful instances
are 3.07° and 10.31 metres, respectively.
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