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A. Extra details

A.1. During learning

During training ζ() is applied at the image resolution. To

do so, masks are upsampled to the original image size and

the output refined masks are downsampled to the feature

map size. The model is trained with the AdamW optimizer

provided by PyTorch, with an initial learning rate of 5e−2.

We use a simple step scheduler which applies a decay of

0.95 every 50 iterations.

A.2. Unsupervised saliency detection

We detail here the different metrics used in the task of

unsupervised saliency detection.

The maximal Fβ metric is the maximum Fβ over various

masks which have been binarized using different thresholds.

Formally, Fβ is the harmonic mean of precision (P) and

recall (R) between a binary mask M and the ground-truth

mask G, i.e.,

Fβ =
(1 + β2) P × R

β2 P + R
, (1)

where β2 is the precision weight, set at 0.3 following

[6, 7, 9, 15]. The max Fβ is computed by taking a soft

predicted mask Mp ∈ [0, 255] and binarizing it using 255
different thresholds between 0 and 254; max Fβ is then

the maximum value of Fβ among all the generated binary

masks, taken over the whole dataset (single optimal thresh-

old). We noticed in SelfMask’s code that the maximal Fβ is

computed with an optimal threshold found for each image

rather than over the whole dataset. For this reason, and for

a fair comparison, we do not report this original max Fβ in

our unsupervised saliency detection table.

The Intersection-over-Union measures the overlap be-

tween foreground regions of a predicted binary mask and

the ground-truth mask, averaged over the entire dataset.

The pixel accuracy metric measures the pixel-wise accu-

racy between a predicted binary mask M ∈ {0, 1}H×W

and the corresponding ground-truth mask G ∈ {0, 1}H×W .

Formally, it can be defined as:

Acc =
1

H ×W

H∑

i=1

W∑

j=1

δGij ,Mij
, (2)

with δ being the Kroneker-delta function and Gij , Mij be-

ing the value of the ground-truth and predicted masks at

position (i, j) ∈ {1 · · ·H} × {1 . . .W}.

A.3. Different setups for FreeSOLO

FreeSOLO [13] is a class-agnostic instance segmenta-

tion method and outputs several instance masks per image,

making it different to other baselines. In order to compare it

to our method, we use the code provided online. We follow
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the original paper to get the prediction masks, i.e., we ap-

ply matrix non-maximum suppresion (NMS) [12] and keep

masks with a maskness score above 0.7.

Unsupervised object discovery We present in Sec. 4.1 of

the main paper our unsupervised object discovery protocol.

The extraction of the single object box is straightforward for

all methods but FreeSOLO [13]. For this method we have

considered three setups: (a) merging all instance masks into

a single one; (b) keeping only the mask with the highest

maskness score; (c) keeping only the mask containing the

largest connected component. Best results were achieved

with (a) and are reported in the main paper.

Semantic segmentation retrieval We have performed

similar tests with FreeSOLO in the semantic segmentation

retrieval task. Additionally to the evaluation setups de-

scribed in the main paper, we have experimented using two

or more instances but without improvements of the results.

A.4. Semantic segmentation retrieval

In the task of unsupervised semantic segmentation re-

trieval, we consider two setups. One considers that the

predicted mask highlights a single object, while the other

splits the mask into connected components and treats each

component as individual object. In both cases, we com-

pute a per-object feature vector averaged over the pixels

of the considered mask. Given a (flattened) binary mask

M ∈ {0, 1}HW×1 and corresponding feature tensor F ∈
R
C×HW with C the number of channels, we obtain a pro-

totype P ∈ R
C as

P = FM. (3)

These prototypes are first extracted for all train samples and

serve as an index for retrieval. Then, to get a label for each

val sample, we compute the sample prototype, find nearest

neighbors in the train prototypes, and assign it the corre-

sponding label.

B. Sensitivity to masking method

B.1. Sensitivity to background threshold τ

We investigate here the impact of the background param-

eter τ on final results. We report in Fig. 5 saliency detec-

tion results. We observe that FOUND is stable to changes of

τ ∈ [0.1, 0.5], with saliency scores varying by at most 0.2

percentage pts on DUT-OMRON and not at all on ECSSD.

B.2. Using masks from other methods

We investigate here the performance of our method when

considering different mask generators. In particular, we

consider the well-known object discovery methods Token-

Cut [14] and LOST [10] with which we extract the masks
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Figure 5. Sensitivity to background threshold τ . We report

saliency detection results measured on the datasets DUT-OMRON

(left) and ECSSD (right) with the IoU metric.

method VOC07 VOC12 COCO20k

TokenCut [14] + T 72.3 75.9 62.7

LOST [10] + T 72.3 76.1 62.8

FOUND (ours) 72.5 76.1 62.9

Table 6. Sensitivity to mask generation method. Unsupervised

object discovery results (measured using the CorLoc metric) when

using different mask generation strategy to generate the masks Mf

refined in our training process. T denotes the training of our seg-

mentation head with the masks Mf .

M
f that are then refined in our training process (following

Sec. 3.2 of the main paper). We present the correspond-

ing unsupervised object discovery results in Tab. 6. They

show that our method is agnostic to the mask generator but

still performs slightly better with our foreground masks —

the complement of the background masks described in Sec.

3.1. It is also to be noted that our method is much faster

than TokenCut because we do not need the computation of

eigenvectors.

C. Additional qualitative results

We present in this section more visualizations of FOUND

results, first on more challenging images (Sec. C.1) and

at the different step of our process (Sec. C.2). We then

motivate the interest of reweighting the transformer heads

(Sec. C.3) via visual illustration. Following we show ex-

amples where the application of the bilateral solver impacts

negatively the results (Sec. C.4) and some more general fail-

ure cases of FOUND (Sec. C.5). We finally provide example

of discovered objects as performed in the task of unsuper-

vised object discovery (Sec. C.6).

C.1. Results on generic images from the Internet

We present in Fig. 6 some results of FOUND random

images taken from the Internet. These results show the

ability of FOUND to discover multiple and diverse objects,

both in terms of classes and scales. In particular, dinosaurs



Figure 6. Visualization of FOUND results on images taken from the Internet. Objects out of the domain of ImageNet [3] and DUT-

TR [11] (datasets used for training the backbone and our segmentation head), of different scales, and of different shapes are correctly

localized.

(a) Input image (b) Coarse background (c) Coarse foreground (d) Refined ζ(Mf ) (e) Predicted M
s

mask M
b mask M

f (FOUND)

Figure 7. More visualizations of masks generated on images from ECSSD [8] at different stages of our method. We show (a) the

input image, (b) the mask M
b extracted using our background discovery step, (c) its inverse M

f used as foreground mask to train our

segmenter head, (d) the version refined using a bilateral solver ζ(Mf ), and (e) the final output of our trained segmentation head M
s.

and spaceships are not depicted in ImageNet [3] nor DUT-

TR [11] and yet FOUND can detect them, showing the abil-

ity to discover objects which “are not background.” More-

over, the selected images here are non-object centric and

out-of-domain showing the capacity of FOUND to go be-

hond ImageNet-like images.

C.2. Visualization of masks at different steps

We provide in Fig. 7 additional visualizations of the

masks generated at different steps of our method. We can

observe that each step brings an improvement over the pre-

vious one. The right-most column presents the final output

of FOUND without any refinement.

C.3. Reweighting the attention heads

We provide in Fig. 8 a visualization of the self-attention

maps extracted from the last layer of our model. We show

the self-attention obtained over the six heads; we can ob-

serve that the 4th head is noisy. When looking for the back-

ground seed, we are looking for the pixel with least atten-

tion. Our reweighting scheme helps in reducing the weight

given to such noisy heads automatically and improves re-



Input image Head 0 Head 1 Head 2 Head 3 Head 4 Head 5

Figure 8. Visualization of self-attention maps obtained with the six different heads in the last attention layer. Results are obtained with a

ViT/S-8 trained using DINO [2] applied on an image from VOC07 [4] (first row) and ECSSD [8].

Coarse mask before ζ() Coarse mask after ζ()

Pred. mask before ζ() Pred. mask after ζ()

Figure 9. Visualization of the negative impact of the bilateral

solver on different ECSSD [8] images.

sults, as shown in Tab. 5 of the main paper.

C.4. Potential negative effect of the bilateral solver

While the application of ζ(), the bilateral solver [1], im-

proves results in general (see Fig. 7), there are cases where

ζ() actually degrades the mask quality. We show examples

of such cases in Fig. 9 both on coarse masks (rows 1 and 2)

and on the final outputs (rows 3 and 4). We can observe that

the function amplifies the under-segmentation, e.g., on the

hat and the leopard head and legs (row 1 and 2). Moreover,

Input image FOUND (ours) SelfMask [9]

Figure 10. Visualization of failure cases for object localization

on images from ECSSD [8], PASCAL VOC07 & VOC12 [4,5] and

DUTS-TE [11] datasets along side results obtained with SelfMask

method. No refinement step is applied.

long and thin segments can disappear, e.g., human and ani-

mal legs or arms (row 3). Correcting this behaviour would

help improving our training and is left for future work.

C.5. Examples of failures cases

We show some failure cases of FOUND in Fig. 10. For

these cases, we also present the results obtained with one of

the best competitor: SelfMask [9]. We observe that night

or dark scenes are challenging (first two rows). Our method

tends to under-segment objects but SelfMask has also dif-



ficulties in segmenting correctly the main objects in these

situation. FOUND, just like SelfMask, is also not robust to

reflection on water (third row). Finally, we observe that both

methods fail to segment the hair in the fourth columns.

C.6. Unsupervised object discovery results

We present in Fig. 11, qualitative results for the unsuper-

vised single object discovery task (no refinement is applied

to the masks). We draw the extracted bounding box on top

of the corresponding predicted mask. The conclusions here

are similar to those discussed in the main paper. Overall our

method segments the objects of interest better and provides

cleaner boundaries.
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(a) Ground truth (b) FOUND-single (ours) (c) TokenCut [14] (d) SelfMask [9] (e) FreeSOLO [13]

Figure 11. Qualitative results for the task of unsupervised single object discovery on PASCAL VOC12 dataset [5]. We show here masks

and boxes extracted as defined in Sec. 4.1. In particular, FOUND is in the single setup (FOUND – single). No refinement step is applied on

the masks.


