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A. Additional Results

In this section, we provide additional results which could
not be included in the main paper due to space constraints.
In particular, we note that baseline methods like SDEdit
[10] can often be run using different values of the hyper-
parameter t0. We therefore provide additional results com-
paring the performance of SDEdit at different t0 ∈ [0, 1]
(refer Sec. A.1). Additionally, we introduce some custom
baselines (which could be used for improving the realism
of final image outputs) and show results comparing their
output performance with our approach (refer Sec. A.2).

A.1. Additional Comparisons with SDEdit

Recall, given a stroke painting y, SDEdit [10] follows
an inversion-based approach for performing guided image
synthesis. In particular, the generative prior is introduced
by first passing the painting y through the forward diffusion
pass y → yt0 [7, 15], and then performing reverse diffusion
yt0 → y0 to get the output image x = y0. Due to space
constraints, we primarily use the standard hyperparameter
value of t0 = 0.8 in the main paper. In this section, we
provide additional results which comprehensively compare
our approach with SDEdit [10] under changing values of t0.

Qualitative Comparisons. Results are shown in Fig. 2,
3. We observe that for lower values of t0, SDEdit generates
outputs which though highly faithful to the reference paint-
ing, lack details and represent simplistic representations of
the target image. Increasing the value of hyperparameter
t0 helps improve realism but the outputs become less and
less faithful with the reference image. In contrast, the pro-
posed approach leads to outputs which are both faithful to
the reference painting as well as exhibit high realism w.r.t
the target domain (generated only using the text prompt).

Quantitative Comparisons. In addition to qualitative re-
sults, we also report quantitative results by analysing the
relationship between the faithfulness F and realismR met-
rics (refer Sec. 4.1 of main paper), under changing values
hyperparameter t0. Results are shown in Fig. 1. We ob-
serve that as compared to prior works, our method provides
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Figure 1. Visualizing faithfulness-realism tradeoff. We anal-
yse the tradeoff between faithfulness-realism distances for differ-
ent methods (note that lower is better for both metrics). We ob-
serve that as compared to prior works, our method provides the
best tradeoff between generating realistic outputs and maintaining
faithfulness with the provided reference painting.

the best tradeoff generating realistic outputs and maintain-
ing faithfulness with the provided reference painting.

A.2. Comparison with Custom Baselines

In this section, we introduce some custom methods (as
baselines) for increasing the realism of generated outputs
with SDEdit [10], and then compare the output performance
for the same with our approach. In particular, we show ad-
ditional comparisons with the following custom baselines,

• Attention Re-weighting (AttnRW) [3] wherein the real-
ism w.r.t the target domain is enhanced by increasing the
attention weighting for the corresponding domain specific
text tokens (e.g. photo, painting etc.). For instance, if the
text prompt says “a photo of a tree”, then we aim to in-
crease the realism of the generated outputs by increasing
the weightage of the cross-attention maps corresponding
to the the word “photo” [3]. Results are shown in Fig. 4.
We observe that while increasing the weightage of do-
main specific text tokens (e.g. photo, painting etc.) helps
improve the realism of the output images to some extent,
the final images still lack details and certain blurry re-
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Figure 2. Additional comparisons. We provide comprehensive comparisons with SDEdit [10] under changing value of hyperparameter t0.
We find that SDEdit [10] either generates faithful but cartoon-like outputs for low t0, or, generates realistic but unfaithful outputs at high
t0. In contrast, our approach leads to outputs which are both realistic (w.r.t the target domain) as well as faithful (to the provided reference).
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Figure 3. Additional comparisons. We provide comprehensive comparisons with SDEdit [10] under changing value of hyperparameter t0.
We find that SDEdit [10] either generates faithful but cartoon-like outputs for low t0, or, generates realistic but unfaithful outputs at high
t0. In contrast, our approach leads to outputs which are both realistic (w.r.t the target domain) as well as faithful (to the provided reference).
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Figure 4. Comparison with Custom Baselines - AttnRW [3]. We compare the performance of our method with the Attention Reweighting
(AttnRW) approach for increasing realism w.r.t the target domain. We find that increasing the weight of cross attention maps corresponding
to the domain-specific text tokens (e.g. photo in above), leads to improved realism of the generated outputs. However, we note that certain
blurry details persist e.g. grass in row 1-4. Also, the increase in realism is accompanied by some image artifacts e.g. blotched image regions
in row 1-4, image in image artifacts in row 4-8 etc. In contrast, our approach improves output realism in a more coherent manner.

gions still persist (e.g. grass in row-1). Furthermore, the
increase in realism is accompanied by some image arti-
facts e.g. blotched image regions in row 1-4, image-in-
image artifacts in row 4-8 etc. In contrast, we find that our
method provides a more practical approach for increasing
the output realism in a semantically coherent manner.

• Increasing Classifier Guidance Scale [5], wherein we at-
tempt to increase the realism of the SDEdit [10] outputs
by increasing the scale of classifier free guidance used
during the reverse diffusion process. Results are shown in
Fig. 5. We observe that while increasing the scale of clas-
sifier free guidance improves the level of detail in the gen-
erated images, the final outputs still resemble cartoon-like

or simplistic representations of the target domain. Fur-
thermore, we also note that our approach can also benefit
from the increase in guidance scale in order to increase
the level of fine-grain detail in the output images.

B. Experiment Details
B.1. Implementation Details

In this section, we provide further details for the imple-
mentation of our approach as well as other baselines used
while reporting results in the main paper.

Ours. We use publicly available text-conditioned latent
diffusion models [11,16] for implementing the purposed ap-
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Figure 5. Comparison with Custom Baselines - CFG [5]. We analyse the impact of increasing the classifier-free guidance scale αcfg on
outputs generated using SDEdit [10] and our method. We find that while increasing the value of αcfg leads to increase in level of details,
the final outputs still represent simplistic representations of the target domain (row-3). Furthermore, as the value of αcfg is increased, the
faithfulness with respect to the reference painting is compromised (e.g. red regions in row-1).

proach in the main paper. The constrained optimization is
performed using gradient descent with the Adam [8] op-
timizer and number of gradient steps Ngrad ∈ [20, 60].
While several formulations of the distance measure L and
painting function f are possible (refer Sec. C), we find that
simply approximating the function L using mean squared
distance and f as a convolution operation with a gaussian
kernel seems to give the fastest inference time performance
with our method. For consistency with prior works, we use
the non-differentiable painting function from SDEdit [10]
while reporting quantitative results. All results are reported
using the DDIM sampling [15] with 50 inference steps for
performing the reverse diffusion process.

SDEdit [10]. We use the standard image-to-image
pipeline from the open-source diffusers library [16] for re-
porting results for SDEdit [10] with different values of hy-
perparameter t0 ∈ [0, 1]. Similar to our method, all re-
sults are reported at 512×512 resolution using DDIM sam-
pling [15] with 50 inference steps for performing the reverse
diffusion process. Unless otherwise specified, a classifier-
free guidance scale [5] of αcfg = 7.5 is used for all experi-
ments.

SDEdit + Loopback [1]. We use the previously de-
scribed SDEdit implementation and iteratively reperform
guided synthesis with the previous diffusion outputs to im-
prove realism of the generated outputs. In particular, we use
Niter = 4 iterations for the iterative process. Also, similar

to [1], in order to increase the realism of generated outputs
with each iteration, the hyperparameter t0 is updated as,

tn+1
0 ← min(tn0 · k, 1.0), k ∈ [1.0, 1.1] (1)

where n ∈ [1, Niter] is the iteration number. Unless other-
wise specified, we use the standard hyperparameter selec-
tion of k = 1.05 and tn=1

0 = 0.8 for our experiments.
ILVR [2]. The original ILVR [2] algorithm was pro-

posed for iterative refinement with diffusion models in pixel
space. We adapt the ILVR implementation for inference
with latent diffusion models [11] for the purposes of this pa-
per. In particular given a reference painting y, the original
ILVR algorithm modifies the diffusion output xt (in pixel
space) at any timestep t during reverse diffusion process as,

x̃t = ϕN (yt) + xt − ϕN (xt), yt ∼ q(yt | y) (2)

where q(yt | y) represents the forward diffusion process
from y → yt, ϕN (.) is a low pass filter achieved by scaling
down the image by a factor of N and then upsampling it
back to the original dimensions. Assuming a latent diffu-
sion model with encoder E and decoderD, we simply adapt
the above update in latent space as follows,

xt = D(zt) (3)
zy = E(y), zyt ∼ q(zyt | zy) (4)

x̃t = ϕN (yt) + xt − ϕN (xt), yt = D(zyt) (5)
z̃t = E(x̃t) (6)



where Eq. 3, 6 map the latent features zt to pixel space xt,
and vice-versa. Eq. 4 computes yt from y by first mapping
y to zy , computing the forward diffusion zy → zyt

and then
reverting back zyt

to yt. Finally, Eq. 5 is simply the origi-
nal update rule from ILVR algorithm [2]. A hyperparmeter
value of N = 4 is used while reporting results.

B.2. Quantitative Experiments

Data Collection. Since there is no predefined dataset
for guided image synthesis with user-scribbles and text
prompts, we create our own dataset for reporting quantita-
tive results. In particular, we first collect a set of 100 stroke
painting and text prompt pairs from diverse data modalities
with the help of actual human users. We then augment the
collected data using a prompt-engineering approach to in-
crease the diversity of the collected data pairs. In particular,
the text prompt for each data-pair is modified in order to in
order to replace the domain specific text words (e.g. photo,
painting) with pre-designed target domain templates, while
keeping the underlying content the same. During prompt
engineering, the target domain template is chosen randomly
from [ ‘photo’,‘watercolor painting’, ‘Vincent Van Gogh
painting’,‘children drawing’,‘high resolution disney scene’,
‘high resolution anime scene’, ‘fantasy scene’,‘colored pen-
cil sketch’]. For each data pair, we then sample four ran-
dom guided image synthesis outputs for each baseline and
our method. The resulting dataset consists of 800 (painting,
text-prompt) pairs and 3200 overall samples from diverse
data modalities for final method evaluation.

Quantitative Metrics. In order to evaluate the perfor-
mance of our approach, we introduce two metrics for mea-
suring the faithfulness of the output w.r.t the reference paint-
ing, and the realism of the generated samples w.r.t the tar-
get domain (specified through text-only conditioning). In
particular, given an input painting y and output real image
prediction x, we define faithfulness distance F(x, y) as,

F(x, y) = L2(f(x), y) (7)

where f(.) is the painting function. Thus an output image x
is said to have high faithfulness with the given painting y if
upon painting the final output x we get a painting ỹ = f(x)
which is similar to the original target painting y (Fig. 6).

The painting function f is implemented using the human
stroke-simulation algorithm from SDEdit [10]. In particu-
lar, given an 256 × 256 input image, the output painting is
computed by first passing the image through a median filter
with kernel size 23, and then perform color quantization to
reduce the number of colors to 20 using an adaptive palette.

Similarly, given a set of output data samples S(y, τtext)
conditioned on both painting y and text τtext, and, S(τtext)
conditioned only on the text, the realismR is defined as,

R(S(y, τtext)) = FID (S(y, τtext),S(τtext)) (8)

Reference 
Painting:   .

Generation 
Output:   

Painting Reconstruction

Figure 6. Visualizing input painting y, output x and painted re-
construction ỹ = f(x). The goal is to generate an output x which
is realistic and for which painting loss L2(f(x), y) is minimized.

where FID represents the Fisher inception distance [4].
Please note that while the above defined realism dis-

tance measure R captures the realism with respect to the
target domain, we expect the computed FID scores to be
higher than those expected of unconditioned image outputs.
This is because while the proposed method generates out-
puts which seem realistic to human eyes, the variance of
output distribution is significantly lower than that of real
images. The decreased variance in output images occurs
simply because the layout and color composition are pre-
dominantly fixed as a result of additional conditioning on
the stroke painting y. In contrast, natural images or images
conditioned only on the text prompt have a much higher di-
versity in terms of scene layout and the overall color com-
position. We therefore try to overcome of lack of diversity
in generated image outputs by performing random data aug-
mentations (random horizontal flip and random resized crop
of size 448× 448 on a 512× 512 image) while computing
the final realism scores across different methods 1.

Human User Study. In addition to reporting quantita-
tive results using the above defined measures for faithful-
ness and realism, similar to [10], we also perform a hu-
man user study wherein the realism and the overall satis-
faction score (faithfulness + realism) are evaluated by ac-
tual human users. For the realism scores, given an input
text prompt (with target domain τdomain e.g. τdomain =
‘photo’) and sample images conditioned only on the text
prompt, the participants were shown a pair of image gen-
eration outputs comparing our method with prior works.
For each pair, the human subject is then asked to select
the output image which is more realistic with respect to

1Note that while this helps increase the diversity in scene layout the
diversity in color composition is still lower than that of real images or
image outputs conditioned only on the text prompt.
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Figure 7. Visualizing the effect of GradOP on cross attention maps. We analyse the effect of our approach on the cross-attention maps
generated during the reverse diffusion process. We find that our method leads to cross-attention outputs which help the model pay better
attention to desired image areas in the reference painting. For instance, in the first example, the cross-attention features show high overlap
with the desired dog and field regions. In contrast, the cross attention maps from SDEdit [10] reveal that the model is not paying adequate
attention to the desired image areas (e.g. field in row-1, tree and forest in row-3) while generating the final output.

the target domain (τdomain). Similarly, for computing the
overall satisfaction scores, given an input stroke painting,
text prompt and sample images conditioned only on the text
prompt, the participants were shown a pair of image gener-
ation outputs comparing our method with prior works. For
each pair, the instruction is: “Given the input painting and
text prompt, how would you imagine this image to look like
in reality? Your selection should be based on how realistic
and less blurry the image is (please check level of details),
consistency with the target domain (τdomain) and whether
it is faithful with the reference painting in terms of scene
layout, color composition”. For each task (e.g. computing
overall satisfaction score), the collected data samples (dis-
cussed above) were divided among 50 human participants,
who were given an unlimited time in order to ensure high
quality of the final results. Additionally, in order to remove
data noise, we use a repeated comparison (control seed) for
each user. Responses of users who answer differently to this
repeated seed are discarded while reporting the final results.

C. Method Analysis: Continued

C.1. Effect of GradOP on Cross Attention Maps

As shown by Hertz et al. [3] and our results, the cross-
attention maps corresponding to different words in the input
text prompt play a key role in deciding the overall semantic

contents of the final image output. In this section, we try to
analyse how the proposed approach leads to more realistic
image content generation by analysing the average cross-
attention maps generated while performing the reverse dif-
fusion process with SDEdit [10] and our method.

Results are shown in Fig. 7. We find that our method
leads to cross-attention outputs which help the model pay
better attention to desired image areas in the reference paint-
ing. For instance, in the first example, the cross-attention
features show high overlap with the desired dog and field
regions. In contrast, the cross attention maps from SDEdit
[10] reveal that the model is not paying adequate attention
to the some desired image areas (e.g. field in row-1, forest
in row-3) while generating the final output.

C.2. Semantic Control without Painting Guidance

Recall that in addition to performing high-fidelity guided
image synthesis, we also show that by simply defining a
cross attention based correspondence between the input text
tokens and the user painting, it is possible to control the se-
mantics of different image regions without the need for any
semantic segmentation based conditional training. In this
section, we analyse whether similar semantic control is pos-
sible without having additional guidance through a stroke
painting. In particular, we wish to analyse if such fine-grain
control is only possible while providing additional guidance



Semantic Guide

castle

stream

flowers

castle

lake

pavement

mountains
forest

lake

rocks

forest
pyramid

With Painting GuidanceReference

Te
xt

 P
ro

m
pt

:
“

a
 p

ho
to

o
f 

a
 b

e
a

u
ti

fu
l 

la
n

d
s
c
a

p
e
”

w/o Painting Guidance

Figure 8. Analysing role of painting guidance in semantic control. We analyse the effect of using an underlying reference painting as
guidance in controlling the semantics of different image areas using cross-attention based correspondence approach presented in the main
paper (refer Sec. 3.3 in main paper). We find that additional guidance using reference stroke painting helps the user gain much accurate
control over the semantics of different image regions (e.g. lake in row-3,4, mountains in row-3, rocks, forest in row-4 etc.).

through the reference stroke painting?

To answer this question, we compare the outputs gen-
erated through semantic control with and without using a
reference painting for the guided synthesis process. Results
are shown in Fig. 8. We observe that while for it is feasi-
ble to define the semantics of one or two parts of the image
accurately using cross-attention correspondence, the perfor-
mance decreases as the number of semantic labels increases
(e.g. lake in row-3,4, mountains in row-3, rocks, forest in
row-4 etc.). In contrast, we find that the use of a reference
painting results in much better control over the semantics of
different image regions. We believe that the same is because
the use of a reference painting sets up a generic semantic
structure for the output image which can then be easily re-
fined by defining a cross-attention based correspondence.
For instance, in row-4 of Fig. 8, adding the blue strokes for
lake region sets up a semantic prior which constrains the
inference of output semantics to semantic categories like
river, lake, sea, stream, blue-green grass, blue pavement etc.
The use of semantic correspondence then helps refine these
output semantics to what is actually desired by the user. In
contrast, without stroke guidance, the initial semantics for
lake region could me much more diverse (e.g. sand, rocky
terrain in row-4), and thereby more challenging to refine
through the proposed semantic correspondence strategy.

C.3. Inference Time Analysis

We report a comparison of the average inference times
required for each output image in Tab. 1. All results are
reported using the DDIM sampling [15] with 50 inference
steps, on a single Nvidia RTX 3090 GPU.

Method
Inference Time (s)

w/o mixed precision with mixed precision
SDEdit [10] 6.32 s 4.45 s
Loopback [1] 27.2 s 20.46 s
ILVR [2] 8.24 s 6.17 s
GradOP (Ours) 20.1 s 15.8 s
GradOP+ (Ours) 12.3 s 8.86 s

Table 1. Inference time analysis. Comparing inference time re-
quired for generating each output image for different methods. All
results are reported with DDIM sampling and 50 inference steps.

C.4. Variation in Painting Function

Please recall that a key requirement for solving the pro-
posed constrained optimization in Sec. 3 is to define a dif-
ferentiable painting function f , which provides a good ap-
proximation for “how a human would paint a given image
with coarse user-scribbles”. In this section, we therefore
look at some possible formulations for obtaining an approx-
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Figure 9. Analysing performance for different differentiable ap-
proximations of painting function f . We find that while using a
more accurate painting function [10] (Col-2) leads to slightly more
details (e.g. notice the gradient of the grass regions in row-1, de-
tailed shadows of the castle and island in row-2), in practice more
simpler approximations (e.g. Gaussian Blur) also produces highly
realistic outputs while allowing for much faster inference times.

imation of the painting function in a differentiable manner2,
and compare the corresponding output results.

Painting Function Formulation. In particular, we con-
sider three main formulations for constructing a differen-
tiable painting function f , 1) Median Filter + Color Quan-
tization, wherein we implement a differentiable approxima-
tion of the human-stroke simulation algorithm in [10]. In
particular, given a reference painting y and output x, we first
pass x through a median filter of size 23. We then pass the
output of the last step through a differentiable color quanti-
zation function which maps the image pixels to their nearest
rgb value in the painting y (that is, we are performing color
quantization w.r.t the palette of the reference painting.) 2)
Median Filter wherein we use the median filter alone for
approximating the painting function, and 3) Gaussian Blur
wherein approximate the painting function through a convo-
lution operation with a Gaussian kernel (size 31 and σ=7).

Results are shown in Fig. 9. We observe that while the
use of a more accurate human-stroke simulation function
from [10] allows for the generation of slightly more detailed
outputs (e.g. notice the gradient of the grass regions in row-
1, detailed shadows of the castle and island in row-2), it in-
creases the overall inference time required for the proposed
gradient descent optimization (40.7s on GradOP+). In con-
trast, we find that using much more simpler approximations
(e.g. Median Filter, Gaussian Blur) for the painting func-
tion also produces highly realistic outputs while allowing
for much faster inference times (8.86s, 14.1s on GradOP+
for Gaussian Blur and Median Filter respectively).

2Please note that while several more advanced formulations for design-
ing the autonomous painting function are possible [6,9,12–14,17], they are
usually non-differentiable. In this paper, we primarily limit the choice of
painting functions to differentiable functions in order to allow for gradient
descent based optimization with the proposed GradOP/GradOP+ methods.
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