
SparsePose: Sparse-View Camera Pose Regression and Refinement
Suppemental Material

A. Further Ablation study
A.1. LSTM iterations
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Figure 10. Ablation results varying the number of LSTM steps.

We add an additional ablation experiment over the num-
ber of steps required for the LSTM. We vary the number of
LSTM iterations between 0 and 50, and report the percent-
age of cameras that were predicted between 15◦ of ground
truth. We report the results in Figure 10. As previously
noted, all the experiments were performed with 10 LSTM
iterations, which balances out speed and accuracy of pre-
dictions. While we observe slight improvements with 50
LSTM iterations, overall, using 10 LSTM iterations per-
forms similarly.

A.2. Timing Analysis

Time (seconds)

HLOC [56] 38s
COLMAP + SIFT [39, 58] 18s

Pix. Perfect SFM [37] 55s
RelPose [79] 48s

SRT [55] 2.7s
MetaPose [64] 2.6s

SparsePose 3.6s

Table 1. Time (in seconds) to perform registration on a sin-
gle sequence with 9 source images. To enable fair comparison
between all methods, only sequences where all baseline methods
were able to register all the source images were included in the
analysis. Each of the methods are run on the same NVIDIA A6000
for fair comparison.

A.3. Different rotation threshold
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Figure 11. Evaluating on the percentage of cameras accurately
predicted with 10◦ and 30◦ thresholds.

B. Baseline details

MetaPose. For the MetaPose baseline [64], we used the
initialization from SparsePose, and adapt the MetaPose ar-
chitecture in the officially released code to perform pose up-
dates on the current updates. We do not utilize the human-
specific information proposed, since our data is more gen-
eral than the data used to evaluate MetaPose. We train
MetaPose on the same subset of CO3D [52] that was used
in training SparsePose.

Scene Representation Transformer (SRT). SRT [55] pro-
poses to learn a prior over the 3D geometry from data im-
plicitly by learning a “set-latent scene representation” from
sparse or dense images of the scene using transformer en-
coder and decoder layers. Although SRT does not learn a



direct 3D geometry of the scene, it does learn a prior over
the 3D geometry, as it can perform novel-view synthesis.
To adapt SRT to our evaluation protocol, we add an addi-
tional 3-layer MLP that is trained to predict the relative ro-
tations and translations for the input image sequence. We
train the “unposed” version of SRT, and add an additional
MLP (with 3-hidden layers) to predict rotations and trans-
lations, and we train the method with the the same training
dataset and loss as SparsePose. For training, we use the
same hyperparameters as suggested in the original paper.

Heirarchical Localization (HLOC). For HLOC [56], we
use the officially released code from https://github.
com/cvg/Hierarchical-Localization, which
uses SuperPoint [14] for generating correspondances and
SuperGlue [57] for image matching.

COLMAP + SIFT. For the COLMAP baseline with SIFT
features, we used the officially released code from HLOC
https : / / github . com / cvg / Hierarchical -
Localization, which supports SIFT image features.

RelPose. For the RelPose baseline, we used the offi-
cially released code from https://github.com/
jasonyzhang/relpose, and trained on the same
dataset used to train SparsePose. We use the default Rel-
Pose hyperparameters.

Pixel Perfect SFM. For the Pixel Perfect SFM [37], we
used the officially released codebase from https://
github.com/cvg/pixel-perfect-sfm.

C. More implementation details

Hyperparameter Value

Number of training steps 500,000
Number of source views during step U [3, 9]
Number of sequences sampled per step 1
Choice of Einit DINO [8]
Architecture of Einit ViT-B/8 [15]
Number of heads Tinit 8
Number of heads Trefine 2
Number of hidden dim. Tinit, Trefine 2048
Number of hidden layers Ninit, Npose 3
Number of hidden dim. Ninit, Npose 512
Activation for Ninit, Tinit, Trefine, Npose GELU
Number of LSTM steps 10
Optimizer Adam [30]
Learning rate 10−4

Learning rate decay iterations 250,000
Learning rate decay factor 10

Table 2. Hyperparameters and implementation details. These
hyperparameters are shared through all experiments for Sparse-
Pose, unless stated otherwise.

D. Further evaluation of results
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Figure 12. CDF of the % of cameras within a max angular error
before and after finetuning the camera poses with BARF.

Figure 12 % of cameras within the max angular er-
ror before and after finetuning with BARF [34] for 5
source views, using a pretrained category-centric NeR-
Former [52]. BARF finetuning generally improves poses
across the board, though the same general trends remain.

Furthermore, we also plot the CDF showing the % of
cameras predicted that are within maximum angular error,
for all considered source views, in Figure 13. We can see
that SparsePose continues to outperform classical and learn-
ing based SfM methods by a large margin.

E. Qualitative results
In Figure 14 we provide additional qualitative results

with different numbers of source views and visualize the
predicted camera poses by our method compared to base-
lines. We also include additional qualitative novel-view
synthesis results for different categories over different num-
bers of source views in Figure 15 and Figure 16. In both
cases, we see that SparsePose predicts more accurate cam-
era poses, resulting in higher quality novel-view synthesis
compared to other baselines.
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Figure 13. CDF for different number of source views and the % of cameras less than the maximum angular error.
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Figure 14. More qualitative results for the predicted camera poses. The camera centers are projected to the x− y plane for easy visual
comparison. The ground truth poses are shown in black, predicted poses in red, and the first camera for each sequence (used to align
predictions) in green. Gray boxes indicate failure to converge.
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Figure 15. More qualitative renders from a sparse set of unposed images.
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Figure 16. More qualitative renders from a sparse set of unposed images.


	. Further Ablation study
	. LSTM iterations
	. Timing Analysis
	. Different rotation threshold

	. Baseline details
	. More implementation details
	. Further evaluation of results
	. Qualitative results

