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A. Additional Implementation Details

For all methods, we use the Adam [4] optimizer with
β1 = 0.9 and β1 = 0.999, and a batch size of 128 images.
We resize all images to 224x224 and normalize them to
[0,1]. We train CIFAR-100 and DomainNet for 20 epochs,
and ImageNet-R for 50 epochs (chosen to ensure models
converge fully for each task). As discussed in the main
text, we use the same prompting lengths and locations for
L2P [10] and DualPrompt [9] as recommended by the more
recent DualPrompt paper. Specifically, for Dualprompt, we
use a length 5 prompt in layers 1-2 (referred to as general
prompts) and length 20 prompts in layers 3-5 (referred to
as task-expert). For L2P, we use a prompt pool of size 20,
total prompt length of size 20, and choose 5 prompts from
the pool to use during inference.

As done in DualPrompt [9], we tuned all addi-
tional hyperparameters using 20% of the training data
as validation data. This resulted in using a learning
rate of 1e−3 for all prompting methods (as opposed
to 5e−3 as reported in DualPrompt), and a learning
rate of 1e−4 for all methods which fully fine-tune the
model. We searched for learning rates in the values of
{1e−6, 5e−6, 1e−5, 5e−5, 1e−4, 5e−4, 1e−3, 5e−3, 1e−2}.
We also found that cosine-decaying learning rate outper-
forms a constant learning rate (which was used in the
original DualPrompt implementation). We conjecture
that the reduced and decaying learning rate explain the
performance boost we obtained on the 10-task ImageNet-R
benchmark using our implementations.

For our method, we use a prompt length of 8 and 100
prompt components (and prompt at the same locations as
DualPrompt), which were chosen with a hyperparameter
sweep on validation data to have the best trade-off between
performance and parameter efficiency. We searched for
prompt lengths in the range of [4,40] and prompt compo-
nents in the range of [5,500]. We use λ = 0.1 to weight
the orthogonality regularization loss, chosen from sweep-
ing across decade values from 1e−6 up to 1e2. As shown

in Section 5.3 of our main text, we see that increasing the
prompt length has little effect on our method, whereas in-
creasing the prompt component size has strong returns all
the way up to 200 components.

Finally, when implementing classification loss for fine-
tuning, L2P, DualPrompt, and CODA-P, we re-use a tech-
nique from the official GitHub repo for the DualPrompt and
L2P papers [9, 10] and replace the predictions from past-
task logits with negative infinity when training a new task.
This results in a softmax prediction of “0” for these past
task classes and prevents gradients from flowing to the lin-
ear heads of past task classes. While not discussed in these
papers, this technique is crucial for performance of these
methods, as we confirmed during reproduction. Essentially,
the linear layer is highly biased towards new tasks in class-
incremental learning in the absence of rehearsal, so this
technique prevents the linear head from learning a bias to-
wards new classes over past classes. We note that this bias
is a well-known issue [1, 11].

B. Additional Results
We report extended results, including standard devi-

ations and additional parameters trained, for all bench-
marks in Tables A (5-task ImageNet-R [3, 9]), B (10-task
ImageNet-R), C (20-task Imagenet-R), D (10-task CIFAR-
100 [5]), E (5-task DomainNet [8]), and A (Dual-Shift
ImageNet-R).

We evaluate methods using (1) average accuracy AN , or
the test accuracy averaged over all N tasks, and (2) aver-
age forgetting [2, 6, 7] FN , or the drop in task performance
averaged over N tasks. The reader is referred to Appendix
C of Wang et al. [9] for the formal metric definitions. We
emphasize that AN is the more important metric and en-
compasses both method plasticity and forgetting, whereas
FN provides additional context subject to the model’s plas-
ticity (i.e., a lower FN value and a lower AN value would
indicate that the model’s lower forgetting results from its re-
duced adaptivity to new tasks, which is an undesirable trait).
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Table A. Results (%) on 5-task ImageNet-R (40 classes per task). AN gives the accuracy averaged over tasks, FN gives the average
forgetting, and Nparam gives the % of trainable parameters and final parameters w.r.t. the base ViT pre-trained model. We report the mean
and standard deviation over 5 trials.

Method AN (↑) FN (↓) Nparam (↓)
Train/Final

Upper-Bound 77.13 - 100/100
ER (5000) 71.72± 0.71 13.70± 0.26 100/100

FT 18.74± 0.44 41.49± 0.52 100/100
FT++ 60.42± 0.87 14.66± 0.24 100/100

LwF.MC 74.56± 0.59 4.98± 0.37 100/100
L2P++ 70.83± 0.58 3.36± 0.18 0.7/100.7

Deep L2P++ 73.93± 0.37 2.69± 0.10 9.6/109.6
DualPrompt 73.05± 0.50 2.64± 0.17 0.5/100.5
CODA-P-S 75.19± 0.47 2.65± 0.15 0.7/100.7
CODA-P 76.51± 0.38 2.99± 0.19 4.6/104.6

Table B. Results (%) on 10-task ImageNet-R (20 classes per task). AN gives the accuracy averaged over tasks, FN gives the average
forgetting, and Nparam gives the % of trainable parameters and final parameters w.r.t. the base ViT pre-trained model. We report the mean
and standard deviation over 5 trials.

Method AN (↑) FN (↓) Nparam (↓)
Train/Final

Upper-Bound 77.13 - 100/100
ER (5000) 64.43± 1.16 10.30± 0.05 100/100

FT 10.12± 0.51 25.69± 0.23 100/100
FT++ 48.93± 1.15 9.81± 0.31 100/100

LwF.MC 66.73± 1.25 3.52± 0.39 100/100
L2P++ 69.29± 0.73 2.03± 0.19 0.7/100.7

Deep L2P++ 71.66± 0.64 1.78± 0.16 9.6/109.6
DualPrompt 71.32± 0.62 1.71± 0.24 0.8/100.8
CODA-P-S 73.93± 0.49 1.60± 0.20 0.7/100.7
CODA-P 75.45± 0.56 1.64± 0.10 4.6/104.6

Table C. Results (%) on 20-task ImageNet-R (10 classes per task). AN gives the accuracy averaged over tasks, FN gives the average
forgetting, and Nparam gives the % of trainable parameters and final parameters w.r.t. the base ViT pre-trained model. We report the mean
and standard deviation over 5 trials.

Method AN (↑) FN (↓) Nparam (↓)
Train/Final

Upper-Bound 77.13 - 100/100
ER (5000) 52.43± 0.87 7.70± 0.13 100/100

FT 4.75± 0.40 16.34± 0.19 100/100
FT++ 35.98± 1.38 6.63± 0.11 100/100

LwF.MC 54.05± 2.66 2.86± 0.26 100/100
L2P++ 65.89± 1.30 1.24± 0.14 0.7/100.7

Deep L2P++ 68.42± 1.20 1.12± 0.13 9.6/109.6
DualPrompt 67.87± 1.39 1.07± 0.14 1.3/101.3
CODA-P-S 70.53± 1.24 1.00± 0.15 0.7/100.7
CODA-P 72.37± 1.19 0.96± 0.15 4.6/104.6



Table D. Results (%) on 10-task CIFAR-100 (10 classes per task). AN gives the accuracy averaged over tasks, FN gives the average
forgetting, and Nparam gives the % of trainable parameters and final parameters w.r.t. the base ViT pre-trained model. We report the mean
and standard deviation over 5 trials.

Method AN (↑) FN (↓) Nparam (↓)
Train/Final

Upper-Bound 89.30 - 100/100
ER (5000) 76.20± 1.04 8.50± 0.37 100/100

FT 9.92± 0.27 29.21± 0.18 100/100
FT++ 49.91± 0.42 12.30± 0.23 100/100

LwF.MC 64.83± 1.03 5.27± 0.39 100/100
L2P++ 82.50± 1.10 1.75± 0.42 0.7/100.7

Deep L2P++ 84.30± 1.03 1.53± 0.40 9.5/109.5
DualPrompt 83.05± 1.16 1.72± 0.40 0.7/100.7
CODA-P-S 84.59± 0.87 1.76± 0.28 0.6/100.6
CODA-P 86.25± 0.74 1.67± 0.26 4.6/104.6

Table E. Results (%) on 5-task DomainNet (69 classes per task). AN gives the accuracy averaged over tasks, FN gives the average
forgetting, and Nparam gives the % of trainable parameters and final parameters w.r.t. the base ViT pre-trained model. We report the mean
and standard deviation over 3 trials.

Method AN (↑) FN (↓) Nparam (↓)
Train/Final

Upper-Bound 79.65 - 100/100
ER (5000) 58.32± 0.47 26.25± 0.24 100/100

FT 18.00± 0.26 43.55± 0.27 100/100
FT++ 39.28± 0.21 44.39± 0.31 100/100

LwF.MC 74.78± 0.43 5.01± 0.14 100/100
L2P++ 69.58± 0.39 2.25± 0.08 0.9/100.9

Deep L2P++ 70.54± 0.51 2.05± 0.07 9.7/109.7
DualPrompt 70.73± 0.49 2.03± 0.22 0.6/100.6
CODA-P-S 71.80± 0.57 2.54± 0.10 0.6/100.6
CODA-P 73.24± 0.59 3.46± 0.09 4.8/104.8

Table F. Results (%) on ImageNet-R with covariate domain shifts. Results are included for 5 tasks (40 classes per task). We simulate
domain shifts by randomly removing 50% of the dataset’s domains (e.g., clipart, paintings, and cartoon) for the training data of each task
(see SM for more details). AN gives the accuracy averaged over tasks, FN gives the average forgetting, and Nparam gives the % of
trainable parameters and final parameters w.r.t. the base ViT pre-trained model. We report the mean and standard deviation over 5 trials.

Method AN (↑) FN (↓) Nparam (↓)
Train/Final

Upper-Bound 77.13 - 100/100
ER (5000) 67.39± 0.37 11.94± 0.17 100/100

FT 17.93± 0.27 37.49± 0.28 100/100
FT++ 54.51± 0.68 14.41± 0.33 100/100

LwF.MC 64.02± 1.55 7.05± 0.27 100/100
L2P++ 65.08± 0.29 2.79± 0.32 0.7/100.7

Deep L2P++ 65.74± 0.12 2.48± 0.30 9.6/109.6
DualPrompt 66.98± 0.08 2.21± 0.28 0.8/100.8
CODA-P-S 69.73± 0.18 2.35± 0.19 0.7/100.7
CODA-P 71.35± 0.08 2.56± 0.26 4.6/104.6



For each result, we calculate the mean and standard devi-
ation over separate runs. Each run contains different shuf-
fles of the class order; specifically, we shuffle the classes
using a random seed that is set for each “trial run” - and
form the tasks using this class shuffle. Importantly, the class
order and all randomized seeds, including model initializa-
tion, are consistent between different methods in the same
“trial run”.

We additionally report the number of parameters trained
(i.e., unlocked during training a task) as well as the total
number of parameters in the final model. These are re-
ported in % of the backbone model for easy comparison.
Importantly, we design CODA-P-S to have fewer param-
eters than DualPrompt in the 10-task ImageNet-R setting
(our main experiment setting). As we change the number
of tasks in ImageNet-R, the number of total parameters for
DualPrompt changes because the pool size is set as equal to
the number of total tasks by definition (unlike ours, which
is set as a hyper-parameter, allowing us to increase or de-
crease the number of trainable parameters to accommodate
the underlying complexity of the task.)

C. ImageNet-R Dual-Shift Benchmark

Our motivation for the challenging dual-shift ImageNet-
R [3, 9] benchmark is to show robustness to two differ-
ent types of continual distribution shifts: semantic and
covariate. Specifically, there are 15 image types in the
ImageNet-R dataset: ‘art’, ‘cartoon’, ‘deviantart’, ‘em-
broidery’, ‘graffiti’, ‘graphic’, ‘misc’, ‘origami’, ‘painting’,
‘sculpture’, ‘sketch’, ‘sticker’, ‘tattoo’, ‘toy’, ‘videogame’.
We divide the dataset into 5 tasks of 40 classes each, and
within each task we randomly remove 8 of the domain types
from the training data. The task becomes more challeng-
ing because we now have image type domain shifts injected
into the continual learning task sequence, in addition to the
already-present class-incremental shifts.
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