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A. Discussion on Choice of BLIP
We chose to base our method on BLIP as it had high-

est out-of-the-box performance (as a pre-trained model) on
the ConStruct-VL tasks (Table 1) compared to numerous
VL models including the very recent CyCLIP [4], thus
making it a good representative source model for CL on
ConStruct-VL. We also evaluated the out-of-the-box per-
formance on ConStruct-VL tasks using METER [3], X-
VLM [7], VLMO [1], and FIBER [2], and observed an
average performance of 56.8%, 58.9%, 54.6%, and 73.9%
respectively (21.0%, 18.9%, 23.2, and 3.9% below out-of-
the-box BLIP), which further demonstrates the difficulty of
VL models to understand VL concepts. As our approach is
orthogonal to continued improvements in VL, we note that
a great future direction is to explore future improved VL
models with our approach on ConStruct-VL.

B. Details on Prompting Baselines
In Section 4 (Experiments), we discuss our PyTorch im-

plementations of the very recent and influential L2P [6] and
DualPrompt [5] works which are state-of-the-art (SOTA)
data-free visual continual learning (CL) prompting-based
methods. In our PyTorch implementation, we rigorously
followed the description and the JAX code of L2P and Du-
alPrompt. Furthermore, we tuned their hyperparameters
for ConStruct-VL by maximizing their performance on the
same 3 task sequence of ConStruct-VL as for all of the com-
pared methods, including all the baselines and our own ap-
proach (Sec. 4). In this section, we provide additional de-
tails on these L2P and DualPrompt baselines.

L2P and DualPrompt work by learning a key-value
paired prompt pool based on an instance-wise query mech-
anism. For L2P, we use a prompt size of 4, prompt pool size
of 50, and choose the 5 closest prompts from the pool at a
time. For DualPrompt, we use a prompt length of 20 for the
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‘expert’ prompts, and a prompt length of 6 for the ‘general’
prompts. Importantly, these hyperparameters were tuned in
the same manner as for all other compared methods in our
paper by maximizing performance on the same 3 tasks se-
quence of ConStruct-VL (starting from the hyperparame-
ters recommended in the original papers [5, 6]). We also
searched where to insert prompts. Whereas originally L2P
has prompting in layer 1 only, and DualPrompt has ‘gen-
eral’ prompts in layers 1,2 and ‘expert prompts’ in layers
3,4,5; through tuning L2P and DualPrompt on ConStruct-
VL, we found that adding prompts in every layer of the
model for both methods (i.e., layers 1-12 for L2P and lay-
ers 3-12 for DualPrompt ‘expert’ prompts) maximizes their
ConStruct-VL performance.

We note that the under-performance of these methods on
the proposed ConStruct-VL benchmark (Tab. 1, Tab. 2a,
Tab. 2b). is likely an indication that the proposed problem
of multi-modal continual learning of SVLCs in ConStruct-
VL is challenging to the vision-only CL SOTA and is thus
an exciting new CL goal, which we just started to explore
in the current work.
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