
dataset: oxford_flowers102, length: 1, embed: 32, 
word: 0.848, token:0.851

Code
Text

(a) S= 1 (NMI=0.848)

dataset: oxford_flowers102, length: 128, 
embed: 32, word: 0.800, token:0.820

(b) S= 128 (NMI=0.800)

Figure 10. t-SNE plots of instance-conditioned prompt representations on flowers dataset. Points of the same color are from the same class.
We also report normalized mutual information (NMI) score by clustering prompt representations using KMeans.

A. Pseudo-code for Token Generator
In Fig. 13, we provide an example code that implements the prompt token generator in Flax [25] format.

B. Analysis and Discussion
In addition to the analysis in Sec. 4.3, we present extra study to better understand prompt tuning for generative transfer

learning. In Appendix B.1 we study to understand prompt representations. In Appendix B.4, we make a comparison to other
transfer learning methods in the context of image synthesis.

B.1. What does the Prompt Learn?

To understand what the prompt has learned, we study some properties of learned prompt representations. For this study,
we train instance conditioned prompt models on flowers dataset of VTAB, with S=1 and 128. Note that no class information
is used for training in this experiment.

We draw t-SNE plots [68] of prompts in Fig. 10. Here, we opt to use an output of an MLPC as a prompt representation
instead of a token sequence (e.g., output of an MLPT ) due to its low dimensionality. We see in Fig. 10a that points of
the same color (i.e., same class) are grouped together, implying that the prompt representations learn discriminative class
information. While we see a similar trend in Fig. 10b, there are clusters crowded with points of various colors. We quantify
our observation using a normalized mutual information (NMI) computed by clustering prompts. Clustering is more consistent
with the ground-truth class labels with higher NMIs. The model with S=1 achieves 0.848 and the one with S=128 gets
0.800. We note that these are even better results than the number obtained using an embedding from ImageNet pretrained
ResNet-50 [24] (NMI=0.734).

B.2. Adaptation-Diversity Trade-Off

We study prompts with various lengths, but on a single image. We show generated images of models with different lengths
in Fig. 11. With short prompts, the model produces diverse but less detailed images. On the other hand, a long prompt model
generates images of a higher quality, more faithful to the training image, but less diverse. This implies that the short prompt
learns concepts, while the long prompt learns fine details of training data. This is in line with our results in Appendix B.1
where short prompts learn more discriminative information than long prompts.

In Fig. 12, we visualize images generated by models of Appendix B.1. Compared to images in Fig. 12a whose model
is trained with S=1, we clearly see in Fig. 12c that the model trained with a long prompt generates images that are more
consistent with training instances.



1 2 4 8 16 128

Figure 11. A single training image in red box and those generated by models using prompts of various lengths from 1 to 128.

(a) Oxford Flowers, “Grape hyacinth” (S= 1) (b) SUN397, “Bedroom” (S= 1)

(c) Oxford Flowers, “Grape hyacinth” (S= 128) (d) SUN397, “Bedroom” (S= 128)

Figure 12. Instance-conditioned generation. For each row, leftmost image in red box is a training image and next five images are gener-
ated. When instance conditioned, generated images follow finer-grained details of the reference training image, such as color, shape, or
background, beyond class information. Adaptation and diversity could be further controlled by the prompt length.

B.3. Ablation on Prompt Token Generators

One of our technical novelties is the parameter-efficient design of the prompt token generator as in Fig. 3b. In addition to
Sec. 4.3, we provide an extra study on different prompt token generators.

Tab. 7 summarizes results. The key takeaway is that the performance, measured in FIDs, for models using prompts with
the proposed factorization closely matches those using the baseline, non-factorized prompts. This is particularly true for
NAR transformers. On the other hand, AR transformers still prefers prompt generators with more parameters. Nevertheless,
we achieve on par results with the baseline using less than 30% of parameters.

B.4. Beyond Prompt Tuning for Generative Transfer

We have studied applying a prompt tuning to learn generative vision transformers via knowledge transfer. We have seen
promising results, e.g., excelling state-of-the-art GAN-based transfer learning methods at generative modeling. In addition,
we demonstrate the importance of knowledge transfer for fast and efficient learning of generative models from small training
data. Despite the success, prompt tuning is not the only method for learning to transfer transformer-based sequence models.



# params train / step generation

Prompt tuning (S=128) 0.76M 1× 1×
Prompt (S=1) + Adapter tuning 5.43M 1.04× 0.84×
Prompt (S=1) + Fine-tuning

172M 1.67× 0.80×Scratch

Table 5. Qualitative comparison (e.g., number of trainable parameters, train and generation time) among various learning strategies based
on NAR transformers.

Method 10 epoch 200 epoch 800 (prompt) or 1600 epoch

S (<10k) M (<100k) L (>100k) S (<10k) M (<100k) L (>100k) S (<10k) M (<100k) L (>100k)

Prompt (S=128) 27.6 33.7 84.2 18.5 30.6 88.9 17.7 30.7 88.9
Prompt + Adapter 20.1 24.8 72.7 15.7 22.8 73.0 15.1 23.3 74.0
Prompt + Fine-tune 19.5 23.2 72.7 15.0 28.8 74.2 14.2 33.9 74.2
Scratch – 60.0 26.0 74.9 22.7 23.2 76.5

Table 6. FID vs the number of train epochs for various learning methods for non-autoregressive transformer-based sequence models.
Knowledge transfer is essential for faster convergence when training data is small. For adapter or fine-tuning, we also introduce learnable
prompt of length S=1 to inject class-condition information.

NAR # params Small Medium Large Natural Struct. Spec.

S=16

baseline 1.81M 18.6 34.6 89.1 23.8 50.9 41.7
F=1 0.68M 18.6 36.1 89.5 25.2 51.9 41.5
F=4 0.95M 18.6 35.5 88.4 24.4 51.5 41.4
F=16 2.02M 18.5 35.0 86.8 24.3 50.8 40.4

S=128

baseline 10.4M 18.2 30.8 86.4 22.0 46.9 39.9
F=1 0.76M 18.5 30.6 88.9 22.5 47.1 40.5
F=4 1.30M 18.1 31.5 88.0 23.3 48.2 38.0
F=16 3.39M 17.9 30.8 86.5 22.6 47.4 37.7

AR # params Small Medium Large Natural Struct. Spec.

S=16

baseline 2.02M 30.5 41.9 82.7 28.5 61.9 41.7
F=1 0.88M 34.5 43.3 83.9 32.3 62.9 42.9
F=4 1.14M 31.9 42.3 82.7 29.9 62.0 42.0
F=16 2.21M 31.2 41.9 82.6 28.9 61.9 41.6

S=256

baseline 20.4M 25.7 32.7 71.6 23.7 52.1 35.9
F=1 1.06M 32.3 33.5 70.5 29.0 49.1 36.4
F=4 1.88M 31.2 41.9 82.6 28.9 61.9 41.6
F=16 5.16M 26.6 32.6 69.9 24.5 48.9 34.6

Table 7. Ablation on prompt token generators for (left) NAR and (right) AR transformers on VTAB. We report FIDs averaged by different
categorizations of tasks.

For the completeness, we conduct an extended study for various learning methods of generative vision transformers.
To that end, we adopt adapter tuning and fine-tuning with a learnable prompt of length S=1 to inject condition informa-

tion, in addition to the prompt tuning and learning from scratch. Adapter tuning [28] introduces learnable adapter modules to
each transformer block. Fine-tuning unfreezes pretrained weights and updates them. All models are trained using the same
loss (e.g., masked visual token model loss [7] for NAR transformer).

For experiments, we vary the number of training epochs as training efficiency is one of the key differentiating factors
across various learning strategies. We train models for 10, 200, 800 or 1600 epochs, while limiting the maximum number of
training steps to 500K to train a model within a reasonable time window.

For prompt tuning, we use 128 prompt tokens with a single factor. For adapter tuning, we use 64 hidden units for adapter
modules. We report the number of trainable parameters (assuming 100 classes), train time per step and generation time
comparisons in Tab. 5. Prompt tuning shows the best parameter and train time efficiency, where the number of trainable
parameters is less than 0.5% of those of fine-tuning and learning from scratch. On the other hand, due to the longer sequence,
it takes more time for generation than those models with a single class token. While the number of trainable parameters for
prompt tuning is significantly less (e.g., <0.5%) than that of fine-tuning or learning from scratch, the improvement in the
training speed is less significant. This is because the prompt is attached at the first transformer layer and the model still needs
to perform entire forward and backward passes to compute gradient. Nevertheless, the memory footprint for training and
the parameter storage are the two major benefits of prompt tuning over the fine-tuning and learning from scratch. Adapter
tuning, together with a tunable class-conditional prompt, turns out to be a method with a good balance, with relatively few
trainable parameters and efficiency at both train and test time, As pointed out by [22], adapter tuning and prompt tuning are
closely related, and we believe that our proposed idea of visual prompt tuning for generative model transfer would be further
improved by exploiting this connection between adapter and prompt tuning methods.

Tab. 6 compares the generation performance in FID on VTAB. We see that models with a knowledge transfer converge
faster than the ones without a transfer. For example, it requires almost 800 epochs for models learned from scratch to reach
FIDs of the prompt tuning models trained for 10 epochs for tasks with a small data. Fine-tuning also adapts to new data



1 import flax.linen as nn
2 import jax.numpy as jnp
3

4 class TokenGenerator(nn.Module):
5 n_token: int # Number of token (S)
6 n_class: int # Number of class (C)
7 n_factor: int # Number of factors (F)
8 d_embed: int # Embed dimension (P)
9 d_token: int # Token dimension (D)

10

11 @nn.compact
12 def __call__(self, cls_ids: jnp.ndarray):
13 MLP_p = nn.Embed(self.n_token, [self.d_embed, self.n_factor])
14 MLP_c = nn.Embed(self.n_class, [self.d_embed, self.n_factor])
15 MLP_t = nn.Dense(self.d_token)
16 MLP_f = nn.Embed(1, self.n_factor)
17

18 pos_ids = jnp.arange(self.n_token)
19 factor_ids = jnp.arange(1)[None, None, ...]
20 pos_embed = MLP_p(pos_ids[None, ...]) # 1 x S x P x F
21 cls_embed = MLP_c(cls_ids[..., None]) # B x 1 x P x F
22 fac_embed = MLP_f([None, None, ...]) # 1 x 1 x 1 x F
23 embed = (fac_embed * (pos_embed + cls_embed)).sum(-1)
24 return MLP_t(nn.LayerNorm(embed))

Figure 13. An example code for the token generator in Flax-ish [25] format.

distributions quickly, though it takes more time per step for model training. Complete FID results are in Tab. 10 of Appendix.
Finally, we’d like to note that there is no single method that wins against the rest as each method has its own advantage.

For example, for applications where the small number of parameter is critical, prompt tuning should be preferred despite
slightly worse generation quality. Also, prompt and adapter tuning are preferred when there are many datasets and tasks as
transformer parameters are shared across tasks.

C. Comprehensive Experiment Description
C.1. Visual Task Adaptation Benchmark (VTAB)

C.1.1 Dataset Meta Information of Visual Task Adaptation Benchmark

In Tab. 8 we provide a dataset meta information, including the number of class and the number of images in each data split,
of VTAB.

C.1.2 Hyperparameters

We provide hyperparameters used in our experiments in Tab. 9. Note that most hyperparameters are shared across datasets,
except the number of training epochs. We use Adam optimizer [33] with a cosine learning rate decay [43]. When learning
models from scratch, we find that learning rate warm-up is essential. To this end, we use a warm-up for the first two epochs
for AR models, and 80 train epochs for NAR transformers.

C.1.3 Experimental Results

We provide complete results in Tab. 10 for autoregressive transformers, non-autoregressive transformers as well as GAN-
based generative model transfer learning methods including MineGAN [71] and cGANTransfer [60]. For AR and NAR
transformers, we report FIDs for prompt tuning, learning from scratch, as well as different transfer learning techniques
including adapter [28] and fine-tuning [35].

C.1.4 Visualization of Generated Images

We visualize images generated by the models trained on each of VTAB tasks from Fig. 14 to Fig. 29.



Dataset # class train val test all

Caltech-101 102 2754 306 6084 9144
CIFAR-100 100 45000 5000 10000 60000
SUN397 397 76128 10875 21750 108753
SVHN 10 65931 7326 26032 99289
Flowers102 102 1020 1020 6149 8189
Pet 37 2944 736 3669 7349
DTD 47 1880 1880 1880 5640
EuroSAT 10 16200 5400 5400 27000
Resisc45 45 18900 6300 6300 31500
Patch Camelyon 2 262144 32768 32768 327680
Diabetic Retinopathy 5 35126 10906 42670 88702
Kitti 4 6347 423 711 7481
Smallnorb (azimuth) 18 24300 12150 12150 48600
Smallnorb (elevation) 9 24300 12150 12150 48600
Dsprites (x position) 16 589824 73728 73728 737280
Dsprites (orientation) 16 589824 73728 73728 737280
Clevr (object distance) 6 63000 7000 15000 85000
Clevr (count) 8 63000 7000 15000 85000
DMLab 6 65550 22628 22735 110913

Mean 49.5 102851.2 15332.8 20416.0 138600.0

Table 8. Dataset meta information (e.g., number of images, number of class) for tasks in VTAB.

AR AR AR AR NAR NAR NAR NAR
scratch + Prompt + Adapter + Fine-tune scratch + Prompt + Adapter + Fine-tune

Learning rate 0.0005 0.001 0.001 0.0005 0.0001 0.001 0.001 0.001 / 0.0001
Batch size 128 256 256 128 128 256 256 128

Weight decay 0.045 0 0 0.045 0.045 0 0 0.045
Warmup epochs 2 0 0 0 80 0 0 0

Table 9. Hyperparameter used for experiments. For NAR + Fine-tune, we use the learning rate of 0.001 for new model parameters (e.g.,
prompt) while using 0.0001 for pretrained ones (e.g., transformer). The same hyperparameter is used across all datasets and scenarios.



Models Caltech101 CIFAR100 SUN397 SVHN Flower Pet DTD EuroSAT Resisc45 PC DR Kitti

MineGAN 102.4 82.6 77.5 144.7 132.1 130.1 87.4 111.5 81.0 170.3 192.2 117.9
cGANTransfer 89.6 31.4 31.1 64.7 61.6 48.6 70.3 45.6 50.3 119.9 149.8 48.9

NAR

Scratch 72.7 24.2 9.2 44.4 57.2 70.3 66.1 39.5 32.0 48.3 25.6 33.8
Scratch (3200 ep.) 14.5 22.5 7.3 43.5 14.9 8.5 29.2 26.4 24.2 51.1 26.0 26.1
P (S=1) 13.4 26.9 7.2 83.0 13.8 11.8 25.7 45.9 28.7 107.9 84.2 32.2
P (S=16) 12.7 25.5 7.3 80.8 13.2 11.0 26.0 35.8 25.1 71.0 34.2 30.0
P (S=128) 12.9 25.0 7.7 62.3 13.4 10.9 25.9 38.4 24.8 67.4 30.8 29.9
P (S=256) 13.0 24.4 7.6 56.4 13.7 11.0 26.4 35.2 25.4 61.8 30.7 31.5
P (S=512) 13.1 26.6 7.7 62.9 13.9 10.1 26.8 34.5 25.2 57.3 28.9 31.8
P (S=128, F=16) 11.8 25.0 7.5 63.4 13.3 11.5 26.0 35.8 24.3 61.4 29.2 27.0
P† (S=16) 12.4 25.3 7.3 72.5 12.7 11.2 25.4 36.9 23.7 71.7 34.3 31.2
P† (S=128) 12.2 25.2 7.5 60.4 12.3 11.0 25.7 35.4 24.3 71.7 28.2 29.6
P (S=1) + Adapter 11.3 20.3 6.7 43.7 11.0 6.9 25.1 28.2 19.9 46.4 24.9 24.0
P (S=1) + Fine-tune 11.3 18.2 6.5 43.9 10.2 6.3 24.2 23.1 18.2 48.0 24.4 22.8

AR

Scratch 76.1 27.1 13.5 31.2 56.1 52.5 92.7 19.4 29.5 32.9 37.0 31.6
Scratch (3200 ep.) 30.5 25.8 14.4 27.9 24.3 28.1 45.1 15.5 11.5 32.3 37.7 33.2
P (S=1) 45.4 25.7 18.8 80.4 28.9 42.2 37.1 37.3 35.1 74.9 93.1 66.8
P (S=16) 41.4 22.5 16.4 55.5 19.6 36.6 33.4 32.6 28.8 49.8 60.7 41.3
P (S=256) 39.6 19.8 15.0 44.0 17.3 34.9 32.5 29.6 26.7 44.0 45.4 37.1
P (S=256, F=16) 27.2 17.6 12.8 42.8 14.1 27.2 30.0 26.4 22.2 44.3 45.4 34.6
P† (S=16) 30.9 19.4 13.7 53.7 15.4 30.8 30.8 30.2 25.7 49.0 60.4 39.7
P† (S=256) 24.6 17.5 12.3 43.1 13.7 25.1 29.8 26.7 20.9 43.6 46.1 35.1
P (S=1) + Adapter 27.0 16.7 12.6 29.9 11.8 19.1 30.8 22.4 22.0 39.4 37.3 29.0
P (S=1) + Fine-tune 17.6 13.2 9.1 27.7 17.7 10.7 35.4 15.1 11.6 30.9 34.5 29.6

Models SNorbA SNorbB Dspr.A Dspr.B ClevrA ClevrB DMLab Mean ≤ 10K ≤ 100K ≥ 100K Natural Special. Struct.

MineGAN 160.4 161.1 252.7 285.1 212.1 225.6 152.4 151.5 114.0 145.6 236.0 108.1 138.7 195.9
cGANTransfer 93.3 90.5 133.7 165.4 109.4 115.0 98.8 85.1 63.8 80.0 139.7 56.8 91.4 106.9

NAR

Scratch 31.4 32.9 87.5 89.0 12.5 13.3 20.6 42.7 60.0 26.0 75.0 49.2 36.4 40.1
Scratch (3200 ep.) 29.4 30.5 90.1 88.3 13.7 13.5 19.6 30.5 18.6 23.3 76.5 20.1 31.9 38.9
P (S=1) 58.6 58.7 119.5 121.3 58.5 57.9 64.4 53.7 19.4 52.2 116.2 26.0 66.7 71.4
P (S=16) 46.1 42.8 98.7 98.8 27.3 28.2 43.4 39.9 18.6 36.1 89.5 25.2 41.5 51.9
P (S=128) 33.6 35.2 100.9 92.8 21.9 23.6 33.5 36.4 18.6 30.6 87.0 22.6 40.3 46.4
P (S=256) 36.8 35.2 100.9 92.8 23.4 24.7 30.0 35.8 19.1 30.0 85.2 21.8 46.9 38.3
P (S=512) 41.6 35.2 100.9 92.8 21.0 23.4 27.8 35.9 19.1 30.4 83.7 23.0 46.8 36.5
P (S=128, F=16) 36.0 36.1 98.7 99.3 25.6 24.1 32.0 36.2 17.9 30.8 86.5 22.6 37.7 47.4
P† (S=16) 44.1 44.7 96.5 99.0 26.0 27.1 38.9 39.0 18.6 34.6 89.1 23.8 41.7 50.9
P† (S=128) 34.6 38.4 92.2 95.4 24.7 27.5 32.9 36.3 18.2 30.8 86.4 22.0 39.9 46.9
P (S=1) + Adapter 29.2 28.7 85.7 86.9 14.6 15.0 20.0 28.9 15.7 22.9 73.0 17.9 29.9 38.0
P (S=1) + Fine-tune 67.2 51.3 86.5 88.0 20.6 19.7 23.4 32.3 15.0 28.8 74.1 17.2 28.4 47.4

AR

Scratch 23.1 23.4 76.5 76.6 12.3 12.2 27.8 39.6 61.8 23.3 62.0 49.9 29.7 35.4
Scratch (3200 ep.) 23.4 23.3 76.5 75.1 12.1 11.4 25.5 30.2 32.2 20.8 61.3 28.0 24.3 35.1
P (S=1) 62.2 62.0 215.9 214.0 90.6 91.6 69.0 73.2 44.1 60.5 168.3 39.8 60.1 109.0
P (S=16) 52.9 52.6 102.3 99.8 51.0 49.8 53.6 47.4 34.5 43.3 83.9 32.2 42.9 62.9
P (S=256) 42.4 42.3 83.7 83.7 29.5 28.9 45.2 39.0 32.3 33.5 70.5 29.0 36.4 49.1
P (S=256, F=16) 43.4 42.7 83.8 81.6 30.2 29.0 45.9 36.9 26.6 32.6 69.9 24.5 34.6 48.9
P† (S=16) 51.3 52.2 100.3 97.3 49.6 49.0 54.0 44.9 29.5 41.7 82.2 27.8 41.3 61.7
P† (S=256) 43.5 43.5 86.9 84.3 30.4 29.8 45.7 37.0 25.7 32.7 71.6 23.7 34.3 49.9
P (S=1) + Adapter 36.0 36.3 77.8 77.9 15.5 14.9 29.6 30.8 23.5 24.8 65.1 21.1 30.3 39.6
P (S=1) + Fine-tune 23.2 23.2 76.8 77.2 11.8 11.5 25.6 26.4 22.2 18.8 61.6 18.8 23.0 34.9

Table 10. FIDs on VTAB tasks tested with various models. We use the “all” set as a reference set for computing FIDs. Unless otherwise
stated, all NAR models are trained for 200 epochs and AR models are trained for 400 epochs with the same hyperparameter settings speci-
fied in Tab. 9. “P” refers to the prompt tuning based on the proposed design of prompt generators with sequence length S and the number
of factors F , while “P†” refers to the prompt tuning with a naive prompt design without any factorization. “DTD”: Describable Tex-
tures Dataset, “PC”: Patch Camelyon, “DR”: Diabetic Retinopathy, “SNorbA”: SmallNorb (azimuth), “SNorbB”: SmallNorb (elevation),
“DsprA”: Dsprites (x position), “DsprB”: Dsprites (orientation), “ClevrA”: Clevr (object distance), “ClevrB”: Clevr (count).



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 14. Visualization of generated images with different models on Caltech101 of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 15. Visualization of generated images with different models on CIFAR100 of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 16. Visualization of generated images with different models on SUN397 of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 17. Visualization of generated images with different models on SVHN of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 18. Visualization of generated images with different models on Oxford Flowers102 of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 19. Visualization of generated images with different models on Oxford iiit Pet of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 20. Visualization of generated images with different models on DTD of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 21. Visualization of generated images with different models on EuroSAT of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 22. Visualization of generated images with different models on Resisc45 of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 23. Visualization of generated images with different models on Patch Camelyon of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 24. Visualization of generated images with different models on Diabetic Retinopathy of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 25. Visualization of generated images with different models on Kitti of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 26. Visualization of generated images with different models on Smallnorb of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 27. Visualization of generated images with different models on Dsprites of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 28. Visualization of generated images with different models on Clevr of VTAB.



(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S= 1) (d) AR transformer with prompt tuning (S= 256, F = 16)

(e) NAR transformer with prompt tuning (S= 1) (f) NAR transformer with prompt tuning (S= 128)

Figure 29. Visualization of generated images with different models on DMLab of VTAB.



(a) Places, 5-shot, Left: real, Right: generation.

(b) Places, 500-shot, All generation, without cherry-picking.

Figure 30. Fewshot generation on places.

C.2. Few-shot Generative Transfer

C.2.1 Visualization of Generated Images



(a) ImageNet, 5-shot, Left: real, Right: generation.

(b) ImageNet, 500-shot, All generation, without cherry-picking.

Figure 31. Fewshot generation on ImageNet.



(a) Animal Face, 5-shot, Left: real, Right: generation.

(b) Animal Face, 100-shot, All generation, without cherry-picking.

Figure 32. Fewshot generation on Animal Face.


