
Integral Neural Networks
Supplementary Material

Kirill Solodskikh*† Azim Kurbanov*† Ruslan Aydarkhanov†

Irina Zhelavskaya Yury Parfenov Dehua Song Stamatios Lefkimmiatis

Huawei Noah’s Ark Lab
{kirillceo, azimcto, ruslancto}@garch.me

{zhelavskaya.irina1, parfenov.yury, dehua.song, stamatios.lefkimmiatis}@huawei.com

Appendix A. Composite quadratures

Nowadays, a variety of numerical integration quadra-
tures have been proposed to compute integrals for func-
tions of a single variable. Any quadrature can be
presented as a linear combination of the function val-
ues on the given partition P = (x0, . . . , xn), where
0 = x0 < x1 < . . . < xm−1 < xm = 1:

∫ 1

0

f(x)dx ≈
m∑
i=0

qif(xi),

To obtain composite quadrature for the case of mul-
tivariate function f(x1, . . . , xn), one-dimensional quadra-
ture should be applied iterativelly to each iterated integral:

g(x1) =

∫∫∫
[0,1]n−1

f(x1, x2, . . . , xn)dx2 . . . dxn,∫∫∫
[0,1]n

f(x1, . . . , xn)dx1 . . . dxn =

∫ 1

0

g(x1)dx1

≈
m∑
i=0

qig(x1i).

Then we apply the same steps for each term g(x1i), but
now it is used for mutivariate functions of n − 1 variables
instead of n. This procedure defines inductive step. The
correctness of application of composite quadratures is guar-
anteed by Fubini’s theorem:

Theorem 1 (Fubini Theorem). Let f(x1, . . . , xn) be the
Riemann integrable function on unit cube [0, 1]n. Then the

*The authors contributed equally to this work.
†Currently affiliated with Garch Lab.

following holds:∫∫∫
[0,1]n

f(x1, . . . , xn)dx1 . . . dxn

=

∫ 1

0

(
· · ·

∫ 1

0

f(x1, . . . , xn)dxn

)
dx1,

if each iterated integral exists. Especially, if function
f(x1, . . . , xn) is continuous, then any iterated integral ex-
ists.

Since we use only smooth and continuous functions, then
from Fubini theorem it follows that we can apply composite
quadratures for evaluation of the multiple integral.

To perform differentiation through integration we apply
the Leibniz theorem:

Theorem 2 (Leibniz integral rule). Let f(λ, x1, . . . , xn) be
a smooth function. If ∂f(λ,x1,...,xn)

∂λ is continuous, then the
following holds:

d

dλ

∫∫∫
[0,1]n

f(λ, x1, . . . , xn)dx

=

∫∫∫
[0,1]n

∂f(λ, x1, . . . , xn)

∂λ
dx.

Proofs of Fubini and Leibniz theorems can be found in
[12]. Combining these theorems we can prove the Neural
Integral Lemma.

Proof of Neural Integral Lemma. For simplicity, we will
perform calculations for fully connected integral operators.
Proof for convolutions can be obtained in the same way.

Let FW (λ, xout, xin) be an integral kernel and FI(x
out)

an input function. As FW (λ, xout, xin) and FI(x
out) are

continuous, their product is also continuous. Therefore, ac-
cording to Fubini theorem for numerical integration, we can
apply composite quadrature (for fully-connected we do not

1

https://garch.me/

need Fubini theorem because of single dimension) to the
function, which is a product of the integral kernel and the
input function:

∫ 1

0

FW (λ, xout, xin)FI(x
out)dxin

≈
m∑
i=0

qiFW (λ, xout, xin
i)FI(x

in
i).

It is easy to see that we can compose matrix Wji for a
vanilla fully-connected layer in the following way:

Wji = qiFW (λ, xout
j , xin

i).

This means that weights of an arbitrary quadrature can be
fused into the weight matrix of the vanilla fully-connected
layer. Now, let us consider the backward pass of the same
layer. Applying Leibniz theorem we obtain:

∂

∂λ

∫ 1

0

FW (λ, xout, xin)FI(x
out)dxin

=

∫ 1

0

∂FW (λ, xout, xin)

∂λ
FI(x

out)dxin.

Now, the same partition and quadrature are applied for
numerical evaluation on backward pass:∫ 1

0

∂FW (λ, xout, xin)

∂λ
FI(x

out)dxin

≈
m∑
i=0

qi
FW (λ, xout, xin

i)

∂λ
FI(x

in
i),

where the last sum is equal to the partial derivative with
respect to λ of forward pass (A), which completes our proof.

Appendix B. Quadrature weights
When the continuous representation with integral opera-

tors are converted into discrete weight tensors, we need to
choose an integration rule and estimate the weights of the
integration quadrature qi (Eq. (A)). We provide further
details on the left and right Riemann sums, as well as the
trapezoidal rule. By denoting ∆xi = xi−xi−1 the weights
of integration quadrature qi are obtained as follows.

For the left Riemann sum:∫ 1

0

f(x)dx ≈
m−1∑
i=0

f(xi)∆xi+1

=⇒ qi =

{
∆xi+1, for i ∈ {0, . . . ,m− 1}
0, for i = n

For the right Riemann sum:∫ 1

0

f(x)dx ≈
m∑
i=1

f(xi)∆xi

=⇒ qi =

{
0, for i = 0

∆xi, for i ∈ {1, . . . ,m}

For the trapezoidal rule:∫ 1

0

f(x)dx ≈
m∑
i=1

f(xi) + f(xi−1)

2
∆xi

=

m−1∑
i=1

f(xi)
∆xi+1 +∆xi

2
+ f(x0)

∆x1

2
+ f(xm)

∆xm

2

=⇒ qi =



∆x1

2
, for i = 0

∆xi+1 +∆xi

2
, for i ∈ {1, . . . ,m− 1}

∆xm

2
, for i = m

Appendix C. Training Integral Neural Net-
works

Conversion of discrete network to INN The algorithm
for converting discrete networks to integral neural networks
is formalized in Algorithm 1. In this algorithm, we con-
sider layers of the network one by one. We minimize the
total variation of the current layer to find the optimal per-
mutation of filters in that layer. We permute the channels of
the following layers connected to the current one as defined

Algorithm 1 Conversion of a conventional discrete NN to
an integral NN.

Require: Discrete network Net.
1: for each layer l in Layers(Net) do
2: //Assume the first dimension is the filter/row
3: Dij := TotalVariation(Wl[i],Wl[j])
4: //Find the optimal permutation
5: path := 2opt(Dij)
6: //Permute filters and perform cubic interpolation
7: Wl := SmoothInterpolate(Wl[path])
8: if HasBias(l) then
9: //Permute bias and perform cubic interpolation

10: bl := SmoothInterpolate(bl[path])
11: end if
12: for each layer l̂ in ChildrenLayers(Net) do
13: //Permute channels of children layers
14: Wl̂[:, :] := Wl̂[:, path]
15: end for
16: end for

Figure 1. Visualization of the training procedure under randomized discretization. The resulting trained network may be used with any
number of channels (columns) and filters (rows) due to flexible discretization along xout and xin.

by its optimal permutation. Thus, each permutation is done
in such a manner that there is a one-to-one correspondence
between permutation of filters and channels across consecu-
tive layers, i.e., the filters permutation in the preceding layer
matches the channels permutation in the following layer.
If a layer has a residual connection to another layer, then the
discretizations of these two layers need to match each other:
we combine these two layers in one group and compute a
common “distance” (total variation) matrix for them, which
is then used to find the optimal permutation. The algorithm
ends once it has gone through all layers of the network.

Algorithm 1 does not guarantee total variation minimiza-
tion of the layer output due to data-free nature, i.e., the algo-
rithm utilizes information only from weights without using
any calibration dataset. Anyway, such a minimization im-
proves interpolation of the weights with a smaller partition
in a sense of improving integration with the fewer number
of points. Total variation can be used as an upper bound of
the integration error estimation. We can formulate it as the
following proposition.

Proposition 1. Let f(x) be a smooth function on the seg-
ment [a, b]. Then the n-th Riemann sum Rn =

∑
i δxif(xi)

has integration error En =
∣∣ ∫ b

a
f(x)dx−Rn

∣∣ for an arbi-
trary uniform partition is bounded by total variation V b

a (f)
of function f(x): En ≤ b−a

n V b
a (f).

Proof. Since function f(x) is smooth, then it has minimum
and maximum values: mf ≤ f(x) ≤ Mf . Therefore, for
any pair xi, xi+1 we obtain:

mf (xi+1 − xi) ≤
∫ xi+1

xi

f(x)dx ≤ Mf (xi+1 − xi).

From the last inequality we derive

∣∣ ∫ xi+1

xi

f(x)dx− f(xi)(xi+1 − xi)
∣∣

≤ (Mf −mf)(xi+1 − xi)

=
b− a

n
(Mf −mf) ≤

b− a

n
V xi+1
xi

,

where the last inequality follows from the definition of the
total variation. By summing all sub-intervals, we finalize
the proof:

En ≤
∑
i

∣∣ ∫ xi+1

xi

f(x)dx− b− a

n
f(xi)

∣∣ ≤ b− a

n
V b
a (f).

Optimization of continuous weights The training proce-
dure for training with randomized discretization is demon-
strated in Fig. 1. We compute the discretization of the inte-
gral kernel of each layer l using partition P l, which corre-
sponds to weights of that layer, and adjust it to the necessary
quadrature. We train our networks with partitions P l of ran-
dom sizes sampled from a certain range. Discretization of
xin of the next layer l + 1 is defined by discretization of
xout of the previous layer l, as shown in the figure.

Appendix D. Experiment details
All training experiments were done using Adam opti-

mizer [4]. For all experiments, except for partition tun-
ing, we have used piecewise constant monotone learning
rate scheduling starting from 1e − 4 with the adjustment
on a plateau (10 epochs without loss function decrement)

Figure 2. Visualization of different channel selection methods without fine-tuning compared with our integral networks. a) ResNet-50 on
Imagenet. b) VGG-19 on Imagenet. c) 2x EDSR on Div2k [1]. d) SRCNN on Set14. [14].

Figure 3. Results on ’0793’ Div2k with 2x EDSR.

by 0.33 multiplier. For the partition tuning experiments,
we used only 1000 iterations for each task, with learning
rate starting from 1e − 4 with adjustment by 0.33 multi-
plier every 300 iterations. In the case of INN initialized
from a pre-trained discrete network using algorithm 1, batch
normalization layers were fused into parent convolution or
fully-connected layer.

Classification experiments For classification experi-
ments on Imagenet dataset [10], we have used pre-trained
discrete
models from torchvision library [8]. For experiments on Ci-
far10 [5], we have used pre-trained discrete networks from
pytorchcv library. INNs initialized from pre-trained dis-
crete networks were trained for 50 epochs (batch size 128)
in the case of Cifar10 dataset and 100 epochs (256 batch
size) in the case of Imagenet dataset. For INN initialized
from scratch, we have used the same training setup as for
discrete models.

Super-resolution experiments For super-resolution ex-
periments using the SRCNN network [2], we have firstly
trained a discrete model. The discrete model was trained
for 400 epochs on the 91-image dataset [13] with batch size

16. For the EDSR [7] experiments, we have used official
PyTorch [9] implementation with pre-trained models. INNs
initialized from the pre-trained models were trained during
80 epochs for each super-resolution model.

D.1. Pruning without fine-tuning

For completeness, we provide additional plots of accu-
racy depending on compression rate (see Fig. 2). It is easy
to see that our networks outperform the channel selection
methods. We use similar notations as in [6] for the provided
channel selection methods. We include results for ResNet-
50 [3] and VGG-19 [11] on Imagenet, 2x EDSR (also see
Fig. 3), 3x SRCNN.

D.2. Feature maps visualization

The output of an INN continuously depends on the chan-
nel index, as channels in integral networks are discretiza-
tions of continuous signals. At the same time, there is no
any specific continuous order in a discrete network (see Fig.
4)

D.3. Implementation

We provide code listings for 2D convolution integral
layer implementation and trainable partition. Implementa-

Figure 4. Visualization of feature maps after the first convolutional layer in SRCNN. a) Integral SRCNN. b) Discrete SRCNN. Feature
maps of the integral network are organized in a continuous way compared to the vanilla network.

tion of the fully-connected layer can be obtained in a sim-
ilar way. These listings do not include full implementation
of our library but provide the sketch of integral operators
development using PyTorch.

1 class Conv2dCubicWeights(torch.nn.Module):
2 """
3 Parameters
4 ----------
5 in_points: size_t.
6 out_points: size_t.
7 kernel_size: size_t.
8 """
9 def __init__(self, in_points, out_points,

kernel_size=3):
10

11 torch.nn.Module.__init__(self)
12 self.weight = torch.nn.Parameter(
13 2.0*torch.rand(
14 1, kernel_size**2, out_points,

in_points
15) - 1.0
16)
17 self.kernel_size = kernel_size
18

19

20 def forward(self, in_channels, out_channels):
21 """
22 Parameters
23 ----------
24 in_channels: size_t.
25 out_channels: size.t
26 """
27 grid = [
28 torch.linspace(-1, 1, in_channels),
29 torch.linspace(-1, 1, out_channels)
30]
31 grid = torch.stack(
32 torch.meshgrid(grid[0], grid[1]),
33 dim=-1
34).unsqueeze(0)
35

36 weight = torch.nn.functional.grid_sample(
37 self.weight, grid, mode=’bicubic’,
38 padding_mode=’zeros’,
39 align_corners=True
40)
41 weight = weight.permute(3, 2, 0, 1)
42

43 return weight.reshape(

44 out_channels, in_channels,
45 self.kernel_size, self.kernel_size
46)

Listing 1. Continuous weights parametrization for 2D
convolution.

1 def integral_uniform_conv2d(
2 input, weight, out_channels,
3 quadrature, bias=None, stride=1
4):
5 """
6 Parameters
7 ----------
8 input: torch.Tensor.
9 weight: torch_integral.parametrizations.

CubicWeight2d.
10 bias: torch_integral.parametrizations.

CubicBias1d.
11 quadrature: torch_integral.quadratures.

BaseIntegrationQuadrature.
12 stride: size_t.
13 """
14 in_channels = input.shape[1]
15 discrete_weights = weight(in_channels,

out_channels)
16 quadrature_weights = quadrature(
17 discrete_weights.shape,
18 integration_dims=(1, 2, 3)
19)
20 # Adjust discrete weights using quadrature

weights
21 discrete_weights = discrete_weights*

quadrature_weights
22 padding = (discrete_weights.shape[-1] - 1)//2
23

24 # Sample bias function: Bias(x_out)
25 if bias is not None:
26 bias = bias(out_channels)
27

28 return torch.nn.functional.conv2d(
29 input, discrete_weights, bias=bias,
30 stride=stride, padding=padding
31)

Listing 2. Integral convolution layer.

1 class TrainablePartition(torch.nn.Module):
2 """
3 Parameters

4 ----------
5 n_points: size_t. Number of points in

partition including 0 and 1.
6 """
7 def __init__(self, n_points):
8

9 torch.nn.Module.__init__(self)
10

11 delta = torch.linspace(0, 1, n_points)
12 delta = delta[1:] - delta[:-1]
13 self.delta = torch.nn.Parameter(delta)
14

15

16 def forward(self):
17 """
18 Returns partition coordinates of the

segment [0, 1].
19 """
20 # prevent zero division by adding 1e-8
21 # abs also could be used instead of

square
22 grid = self.delta**2 + 1e-8
23 grid = grid / grid.sum()
24 # fix left point of segement as 0
25 grid = torch.cat(
26 [torch.Tensor([0.0]), grid], dim=0
27)
28

29 return grid

Listing 3. Trainable partition implementation in Pytorch.

References
[1] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-

Morel. Low-complexity single-image super-resolution based
on nonnegative neighbor embedding. Proceedings of the
British Machine Vision Conference, pages 135.1–135.10,
2012. 4

[2] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. CoRR, abs/1501.00092, 2015. 4

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016. 4

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014. 3

[5] Alex Krizhevsky and Geoffrey E Hinton. Learning multiple
layers of features from tiny images. Technical report, 2009.
4

[6] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 4

[7] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee. Enhanced
deep residual networks for single image super-resolution. In
Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, pages 136–144, 2017. 4

[8] Sébastien Marcel and Yann Rodriguez. Torchvision the
machine-vision package of torch. In Proceedings of the
18th ACM International Conference on Multimedia, MM

’10, page 1485–1488, New York, NY, USA, 2010. Associ-
ation for Computing Machinery. 4

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in Neural Information Processing Systems, 32:8026–
8037, 2019. 4

[10] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Li Fei-Fei. Imagenet large scale visual recognition chal-
lenge. CoRR, abs/1409.0575, 2014. 4

[11] Zisserman A. Simonyan, K. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint,
arXiv:1409.1556, 2014. 4

[12] Michael Spivak. Calculus. Publish or Perish, fourth edition,
2008. 1

[13] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-
resolution as sparse representation of raw image patches.
In 2008 IEEE conference on computer vision and pattern
recognition, pages 1–8, June 2008. 4

[14] R. Zeyde, M. Elad, and M. Protter. On single image scale-
up using sparse-representations. International conference on
curves and surfaces, pages 711–730, 2010. 4

	. Composite quadratures
	. Quadrature weights
	. Training Integral Neural Networks
	. Experiment details
	. Pruning without fine-tuning
	. Feature maps visualization
	. Implementation

