
SinGRAF: Learning a 3D Generative Radiance Field for a Single Scene
Supplementary Material

Minjung Son*1,2 Jeong Joon Park*2 Leonidas Guibas2 Gordon Wetzstein2

1Samsung Advanced Institute of Technology (SAIT) 2Stanford University
minjungs.son@samsung.com, {jjpark3d,gordon.wetzstein,guibas}@stanford.edu

A. Video Results
We highly encourage readers to view our supplementary

video containing visualizations of our 3D scenes, latent in-
terpolations, and comparisons against GSN. The video re-
sults are best suited for appreciating the 3D consistency,
quality, and diversity of our generated scenes. The name
of the attached video file is “singraf video.mp4.”

B. Implementation Details
B.1. Progressive Patch Scaling

In practice, we used the input resolution of 512×512 for
the input images (H ′ = 512) and used the fixed patch size
of 64 × 64 (H = 64). When the scale s = 1 the 64 × 64
patch covers the entire image.

To progressively scale down the patches, we reduce the
patch scale s for the first 100 epochs. Because we are using
1,000 sample batches for each epoch, we gradually reduce
s during the course of 100,000 iterations and then fix s for
the rest of the training. Typically our model exhibits the
best KID score around 300 to 400 epochs.

We randomly sample the scale factor s independently
for each image instance during training. We use a time-
varying uniform distribution for the patch scale: s ∼
U(smin(t), smax(t)), where t is the epoch index. In practice,
we used smin(0) = 0.6 and smax(0) = 0.8 in the beginning
of the training and smin(100) = 0.25 and smax(100) =
0.55 at epoch 100. smin(t) and smax(t) values are inter-
polated linearly as a function of t over the course of 100
epochs.

B.2. Data Augmentation

As described in the main text, we schedule the increase
of angles used for perspective augmentation during train-
ing. Similar to the progressive patch scaling, we gradu-
ally linearly increase the maximum augmentation angle for
100 epochs. We start from the angle range of [0◦, 0◦] to
[−15◦, 15◦] linearly over the course of 100 epochs. For each
real image patch we randomly and independently sample an

angle from the current range and apply the perspective aug-
mentation on the height axis. An example visualization of
this augmentation could be seen in Fig. 1.

Original Angle 5° Angle 10° Angle 15°

Original Angle -5° Angle -10° Angle -15°

Figure 1. Visualizations of the perspective augmentation applied at
different angles. During training, we apply up to 15◦ perturbation
to promote diversity.

B.3. Camera Pose Optimization

As described in the main text, we non-parametrically op-
timize the camera pose distribution during training. Given
a set of 1,000 camera poses: T = {T1, ..., T1000|Ti ∈
SE(3)}. During training, we randomly sample camera
poses from T and render the scenes from the cameras. We
let these camera poses as optimizable variables and back-
propagate the gradients from the adversarial loss to opti-
mize the individual poses. Optimizing for the SE(3) trans-
formation is known to be a difficult task, and directly op-
timizing the values of the transformation matrix is difficult
because the matrix can escape the manifold of SE(3), e.g.,
RR⊺ ̸= I. Therefore, we decompose the matrix into multi-
ple components for ease of optimization.

Specifically, given a transformation T, we can decom-
pose it into:

T =

(
R p
0 1

)
: R ∈ SO(3), p ∈ R3. (1)

1

The rotation matrix can be further decomposed into a mul-
tiplication of 3 matrices:

R = RzRyRx : R{} ∈ SO(3), (2)

where Rz , Ry , and Rx are respectively rotation matrix
about z, y, and x axis. For example, we have that:

Rz =

cos θz − sin θz 0
sin θz cos θz 0
0 0 1

 : θz ∈ R, (3)

where θz is the rotation around the z axis. While it is pos-
sible to parameterize our rotations with θz , θy , and θx, di-
rectly optimizing for the Euler angles is known to be diffi-
cult [6], as there is a discontinuity at θ = 0. Therefore, we
parameterize each rotation with the cosine and sine of the
Euler angle for each axis. Let us denote Rz to be the data
structure we carry for rotation about the z axis:

Rz := [cos θz, sin θz]. (4)

We similarly define Ry and Rx using cosine and sine of the
angles. Then, we know that we can uniquely construct the
rotation matrix R from the R’s. For the whole transforma-
tion, we carry the four data structures to fully describe and
construct the matrix T , which are: [Rz,Ry,Rx, p]. We can
optimize for these variables during training by backprop-
agating the adversarial losses. Note that for each update
of the rotation parameter R{}, we need to make sure that
the cosines and sines are proper, by normalizing it so that
||R{}|| = 1. In practice, we assume that cameras are lo-
cated at the same height and rotate along vertical axis. Thus,
we only optimize px, pz and Ry during the early stages of
training where the expected patch scale is larger than 0.5.

B.4. Training Details

The balancing parameters for the regularization terms in
Eq.(5) of the main paper are λ1 = 0.5 and λ2 = 50. We
use the spatial resolution of 256 × 256 and feature channel
of C = 32 for tri-plane representation [1], which is gen-
erated by a StyleGAN2 [3] generator which is modulated
by a noise vector z ∼ R128. For rendering, we compute
the feature of each sample along a ray via bilinear interpo-
lation followed by concatenation (for the three planes), and
process the feature using a decoder MLP to finally obtain
color and density value. The decoder MLP is composed of
two shared linear layers, one layer for the density branch,
and two additional layers for the RGB branch. Each hid-
den layer uses 64 hidden units with leakyReLU activation
except the final ones used for outputting density and RGB
values. For volume-rendering we used 96 samples per ray
without importance sampling, to generate patches of 64×64
resolution. When applied the patch scale of s = 0.25, the
effective resolution of each patch is 256 × 256, i.e., the

amount of details that exists in each patch would be ob-
tained when rendering at 256 × 256. Therefore, we can
render our models at 256× 256 resolution with details even
though we trained our models with 64×64 patches, without
any 2D upsampling networks. As described in the main text,
we adopt the StyleGAN2 discriminator architecture to pro-
cess the patches, but we additionally concatenate the scale
of each patch. We will release the source code upon accep-
tance.

C. Additional Analysis

C.1. Dataset Selection

Training 3D GANs, including GSN and SinGRAF, takes
a long time. With the finite computational resources at our
disposal, it was simply not possible to run SinGRAF on all
scenes of a large 3D dataset such as Matterport3D. There-
fore, we chose a representative subset of the Replica dataset
and further stress-test our method on wildly different scene
examples of a ballroom of Matterport3D and a custom-
captured outdoor scene. We provide results on one addi-
tional Matterport3D scene (Fig. 2; SinGRAF: KID 0.050
and Div. 0.447; GSN: KID 0.087 and Div. 0.001). Sim-
ilar to other scenes, GSN fails to produce diversity, while
SinGRAF generates diverse and realistic scenes.

In
p

u
t

G
S

N
S

in
G

R
A

F
 1

S
in

G
R

A
F

 2
S

in
G

R
A

F
 3

Figure 2. Additional Matterport3D scene.

C.2. Additional Empirical Analysis

Number of input images We conduct an empirical study
to gauge the effects of varying the number of input images.
As shown in Tab. 1, we observe that reducing the input im-
age number degrades the quality and SinGRAF can gener-
ate diverse scenes for as few as 50 images. On the other
hand, GSN fails to generate diversity for all ablated experi-
ments due to mode collapse.

GSN (1282) SinGRAF (1282) SinGRAF (2562) NeRF (2562)
KID↓ Div.↑ KID↓ Div.↑ KID↓ Div.↑ KID↓ Div.↑

100 .052 .001 .037 .335 .055 .408 .277 0.0
50 .113 .001 .071 .362 .104 .426 .269 0.0
10 .238 .001 .130 .002 .159 .005 .263 0.0

Table 1. Ablation over the number of input images using the
“frl apartment 4” scene.

Comparison with NeRF variants While NeRF and their
variants are used for obtaining 3D structure of a specific
scene rather than generating diversity, we believe that NeRF
variants are interesting baselines to put the realism of our
generated scenes in context. To this end, we train Instant-
NGP [4] and measure KID of generated views at held-out
poses on a Replica scene. To make the comparison fair,
we do not use the ground truth camera poses but instead
estimate the camera poses using an off-the-shelf structure-
from-motion library, i.e., COLMAP [5]. As shown in the
numerical results on Tab. 1, due to the small number of
training views, the test view images of the NeRF variant are
of very low quality.

Comparison with EG3D We trained a EG3D [1] base-
line model for “frl apartment 4” to show an additional com-
parison against a 3D-GAN algorithm. As expected, it fails
to learn diversity (KID 0.078, Div. 0.008) without our
continuous-scale patch discrimination.

Discriminator scale conditioning As described in the
main text, we condition our discriminator with the patch
scale. We conduct an experiment to test of effect of the
scale conditioning, which shows that without discrimina-
tor scale conditioning, the KID of the ablated SinGRAF on
“frl apartment 4” is 0.070 (worse quality) with a similar di-
versity score of 0.341 compared to our model with the scale
conditioning (KID 0.037, Div. 0.335).

Depth map visualization To test the validty of the 3D
structure generated by SinGRAF, we show example depth
maps in Fig. 3.

RGB Depth Map

Figure 3. Depth map visualization (“frl apartment dynamic”).

C.3. Note on the GSN comparison

We trained GSN [2] using the exact same settings used
in their paper and published code except that we did not use
the depth maps. The random poses are sampled from a 10K
pose basket and jittered.

To make the comparison fair against our setup using
the 1K pose basket, we tried reducing the size of the
random pose distribution from 10K to 1K for GSN on
“frl apartment 4” but did not see any difference in quality
or diversity (KID 0.055, Div. 0.001). Moreover, we tried
GSN training with our pose sampling method, but it fails to
converge (KID 0.599, Div. 0.0). The total number of pa-
rameters of GSN (25.4M) is larger than ours (20.7M). We
tried varying GSN parameters, discriminator resolution, and
pose sampling, but couldn’t achieve diversity.

C.4. Visualization of the Diversity Metric

As discussed in the main text, we measure the diversity
of the 3D generative models by fixing a camera and render-
ing with randomly sampled latent codes. In Fig. 4, we show
examples of such renderings. Note how we can tell that
GSN’s model has collapsed to a single mode, thus no vari-
ations from the fixed viewpoints. On the other hand, notice
how SinGRAF generates highly diverse renderings of the
same scenes from the fixed camera with varying latent.

C.5. Latent Code Interpolation

To showcase the rich and smooth latent space we learn
via training SinGRAF on single scenes, we visualize the la-
tent space interpolation by fixing a camera and rendering
the scene using latent vectors obtained via linear interpola-
tion between two latent vectors. The results are shown in
Fig. 6, demonstrating high-quality, and diverse latent em-
bedding of the single scenes. We highly encourage readers
to view our video results for animated interpolation in the
latent space.

GSN SinGRAF

Figure 4. Visualizing randomly sampled 3D scenes from a fixed
camera view. Notice how GSN’s scenes do not change with the
varying latent, indicating mode collapse, while SinGRAF presents
highly diverse renderings.

C.6. Perspective Rendering Results

In the main text, we have only visualized our scenes
in the panorama form. In Fig. 7, we show renderings of
the scenes from randomly chosen latent codes and camera
poses using a perspective camera model. Note that we sam-
pled the camera poses using the distribution T , which is
the result of the optimization process described in Sec. B.3
during training.

C.7. Failure Case

We observe that when the scene contains too many lo-
cal details to be identified from small field-of-view patches,
SinGRAF often learns a mode-collapsed latent space. Such
an example can be found in Fig. 5, where the scene con-
tains detailed paintings on the wall that uniquely determine
the locations of the patches. We note that, while this mode-
collapse behavior is unpredictable and thus is a limitation of
our approach, the reconstructed scene closely resembles the
ground truth scene of the input images. This is surprising,
given that our model is given only unposed images, sug-
gesting a promising future direction toward reconstructing
challenging scenes via adversarial training.

References
[1] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano,

Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas
Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and
Gordon Wetzstein. Efficient geometry-aware 3D generative
adversarial networks. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 2022. 2, 3

[2] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,
Graham W. Taylor, and Joshua M. Susskind. Unconstrained
scene generation with locally conditioned radiance fields. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 14304–14313, October 2021.
3

In
p
u
t

S
in
G
R
A
F

Figure 5. Failure case of the “office 0” scene. The lack of diversity
in this scene is likely due to the paintings on the walls that uniquely
determine the relative locations of most patches. Still, SinGRAF
generates high-quality scene which resemble to input.

[3] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of StyleGAN. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, pages 8110–8119, 2020. 2

[4] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multireso-
lution hash encoding. ACM Transactions on Graphics (ToG),
41(4):1–15, 2022. 3

[5] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4104–
4113, 2016. 3

[6] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5745–5753,
2019. 2

o
ff
ic
e
_3

h
o
te
l_
0

a
p
a
rt
m
e
n
t_
0

fr
l_
a
p
a
rt
m
e
n
t_
4

fr
l_
a
p
a
rt
m
e
n
t_
d
y
n
a
m
ic

c
a
p
tu
re
d

c
a
s
tl
e

Figure 6. Latent code interpolations. We fix the camera viewpoint per scene and render the scene using latent vectors interpolating between
two latent vectors, whose scenes are shown on the two extreme sides.

o
ff
ic
e
_3

h
o
te
l_
0

a
p
a
rt
m
e
n
t_
0

fr
l_
a
p
a
rt
m
e
n
t_
4

fr
l_
a
p
a
rt
m
e
n
t_
d
y
n
a
m
ic

c
a
p
tu
re
d

c
a
s
tl
e

Figure 7. Perspective rendering results. We show perspective renderings of our trained scenes from randomly chosen latent codes and
camera poses.

	. Video Results
	. Implementation Details
	. Progressive Patch Scaling
	. Data Augmentation
	. Camera Pose Optimization
	. Training Details

	. Additional Analysis
	. Dataset Selection
	. Additional Empirical Analysis
	. Note on the GSN comparison
	. Visualization of the Diversity Metric
	. Latent Code Interpolation
	. Perspective Rendering Results
	. Failure Case

