
DIFu: Depth-Guided Implicit Fuction for Clothed Human Reconstruction:
Supplementary Materials

Dae-Young Song†1,2, HeeKyung Lee1, Jeongil Seo1, Donghyeon Cho*2

1Electronics and Telecommunications Research Institute, Daejeon, South Korea
2Chungnam National University, Daejeon, South Korea

{eadyoung,lhk95,seoji}@etri.re.kr, cdh12242@gmail.com

In this supplementary material, additional about DIFu is provided as follows:

• Detailed descriptions of the DIFu architecture used in the experiments.

• Additional qualitative results.

• An ablation study on the effect of using λ.

1. Architectures
1.1. Network Complexity

First, we report the total number of parameters in each method used for the experiments as shown in Table 1 below.

PIFu [5] PaMIR [10] ICON [8] Ours

24,744,136 79,379,559 430,747,671 154,342,718

Table 1. The total number of each method in our experiments. Each number is the summation of the number of parameters in the pretrained
submodules, geometry and texture branches.

1.2. Hallucinator

Residual Block. The structure of a residual block constituting the hallucinator is as shown in Table 2 below.

layer k s p group input

GroupNorm1 - - - 8 input
conv1 1 1 0 1 GroupNorm1
conv2 3 1 1 1 conv1

gate1 γ * GELU(conv2) + input

GroupNorm2 - - - 8 gate1
conv3 1 1 0 1 GroupNorm2
conv4 3 1 1 1 GELU(conv3)

gate2 δ * GELU(conv4) + gate1

Table 2. The architecture of the residual block in our hallucinator, where k, s, p, and group are the kernel size, stride, padding, and the
number of groups for operation, respectively. Also, γ and δ are the learnable gate parameters, and input corresponds to the input of each
layer.

1



Hallucinator. The hallucinator is composed of downsampling convolutional layers, upsampling convolutional layers, and
the residual blocks as shown in Table 3 below.

layer k s p op group Cin Cout input

downconv1 3 2 1 - 1 3 64 front-side RGB
residual1 - - - - - 64 64 downconv1

downconv2 3 2 1 - 1 64 128 residual1
residual2 - - - - - 128 128 downconv2

downconv3 3 2 1 - 1 128 256 residual2
residual3 - - - - - 256 256 downconv3

downconv4 3 2 1 - 1 256 512 residual3
residual4 - - - - - 512 512 downconv4

downconv5 3 2 1 - 1 512 512 residual4
residual5 - - - - - 512 512 downconv5

residual6 - - - - - 512 512 residual5
residual7 - - - - - 512 512 residual6
residual8 - - - - - 512 512 residual7

upconv1 3 2 1 1 1 1024 512 residual8 ⊕ downconv5
residual9 - - - - - 512 512 upconv1
upconv2 3 2 1 1 1 1024 512 residual9 ⊕ downconv4

residual10 - - - - - 512 512 upconv2
upconv3 3 2 1 1 1 768 256 residual10 ⊕ downconv3

residual11 - - - - - 256 256 upconv3
upconv4 3 2 1 1 1 384 128 residual11 ⊕ downconv2

residual12 - - - - - 128 128 upconv4
upconv5 3 2 1 1 1 192 64 residual12 ⊕ downconv1

lconv1 3 1 1 - 1 64 32 upconv5
lconv2 1 1 0 - 1 32 3 lconv1

Sigmoid(lconv2)

Table 3. The architecture of our hallucinator, where k, s, p, op, and group are the kernel size, stride, padding, padding for the output, and
the number of groups for operation. Also, Cin and Cout are the number of input and output channels, and input corresponds to the input
of each layer. The ”upconv” layers are transposed convolutional layers, where ⊕ means channel-wise concatenation of skip-connections.
The structure of ”residual” layers is presented in Table 2.

1.3. Depth Estimator

Our depth estimator includes a voxel encoder, a scale regressor, and an U-Net estimator. Note the notations ”downconv”
and ”upconv” are not the same in Section 1.2.
Voxel Encoder. The voxel encoder embeds a predicted parametric voxel based on depthwise convolutional layers. The
dimension of input SMPL voxel is 128× 128× 128.

layer k s p group Cin Cout input

depthconv1 3 1 1 128 128 128 voxel
downconv1 3 2 1 1 128 256 depthconv1
depthconv2 3 1 1 256 256 256 downconv1
downconv2 3 2 1 1 256 512 depthconv2
depthconv3 3 1 1 512 512 512 downconv2

Table 4. The architecture of the voxel encoder, where k, s, p, and group are the kernel size, stride, padding, and the number of groups for
operation, respectively. Also, Cin and Cout are the number of input and output channels, and input corresponds to the input of each layer.



U-Net Estimator. The U-Net estimator simultaneously generates front/back depth maps ranging from 0 to 1.

layer k s p group Cin Cout input

downconv1* 7 2 3 1 6 32 front-/back-side RGB
downconv2* 5 2 2 1 32 64 downconv1*
downconv3* 3 2 1 1 64 128 downconv2*
downconv4* 3 2 1 1 128 256 downconv3*
downconv5* 3 2 1 1 256 512 downconv4*

upconv5† 3 1 1 1 512 512 downconv5*
iconv5† 3 1 1 1 512 512 upconv5†

upconv4† 3 1 1 1 1280 256 iconv5† ⊕ downconv4* ⊕ depthconv3
iconv4† 3 1 1 1 256 256 upconv4†

upconv3† 3 1 1 1 640 128 iconv4† ⊕ downconv3* ⊕ depthconv2
iconv3† 3 1 1 1 128 128 upconv3†

upconv2† 3 1 1 1 320 64 iconv3† ⊕ downconv2* ⊕ depthconv1
iconv2† 3 1 1 1 64 64 upconv2†

upconv1† 3 1 1 1 96 32 iconv2† ⊕ downconv1*
iconv1† 3 1 1 1 32 32 upconv1†

conv 3 1 1 1 32 2 iconv1†

Sigmoid(conv)

Table 5. The architecture of the U-Net depth estimator, where k, s, p, and group are the kernel size, stride, padding, and the number of
groups for operation, respectively. Also, Cin and Cout are the number of input and output channels, and input corresponds to the input of
each layer. Layers marked with a superscript * indicate that they are followed by the group normalization [7] layer with 8 groups and the
ELU [1] activation function, while a superscript † means only the ELU follows.

Scale Regressor. The scale regressor takes the encoding feature of the U-Net and the final voxel encoding feature of the
voxel encoder.

layer k s p Cin Cout input

scaleconv1† 3 2 1 768 512 downconv4* ⊕ depthconv3
scaleconv2† 3 2 1 512 256 scaleconv1†
scaleconv3† 3 2 1 256 128 scaleconv2†

fc1 - - - 2048 64 scaleconv3†
fc2 - - - 64 32 Dropout(ReLU(fc1))
fc3 - - - 32 16 Dropout(ReLU(fc2))
fc4 - - - 16 1 Dropout(ReLU(fc3))

Sigmoid(fc4)

Table 6. The architecture of the scale regressor, where k, s, and p are the kernel size, stride, and padding, respectively. Also, Cin and Cout

are the number of input and output channels, and input corresponds to the input of each layer. Layers marked with a superscript † indicate
that they are followed by the ELU [1] activation function. The ”fc” denotes fully-connected layers.

1.4. Occupancy Prediction Network

Our occupancy prediction network is composed of a 2D encoder, a 3D encoder, and multilayer perceptrons (MLPs).
First, we adopt the stacked hourglass networks [4] of PIFu as our 2D encoder. However, since it receives a RGB input and a
corresponding depth map, it is modified accordingly to take 4 channels as input. The final 2D feature maps have 256 channels,
front-side and back-side, respectively. Meanwhile, The 3D encoder is from PaMIR for the voxel-aligned feature. The final
3D feature maps have 32 channels. Also, our MLPs are based on the MLPs of PaMIR. Since there are front-/back-side RGB
inputs and depths, our MLPs have [544(256+256+32), 1024, 512, 256, 128, 1] channel dimensions.



1.5. Texture Prediction Network

Our texture prediction network is composed of a 2D encoder, a 3D encoder, and MLPs, which is similar to Section 1.4.
The 2D encoder is from the CycleGAN [11] same as PIFu, and the 3D encoder is same as Section 1.4. The final 2D front-
/back-side feature maps and 3D feature maps have 256, 256, and 32 channel dimensions, respectively. With the feature
maps of the texture prediction branch, the MLPs use the 2D feature maps from Section 1.4. Therefore, the MLPs have
[1056(512+512+32), 1024, 512, 256, 128, 5] channel dimensions.

2. Additional Qualitative Results
In this section, we present additional results of state-of-the-art methods for unseen data in Figure 1–6. All methods

requiring the SMPL [3] model use a pre-trained GCMR [2]. The texture branch of ICON is implemented in that of PaMIR,
because ICON use the SMPL model. Also, Pix2PixHD [6] is adopted for clothed normal generation networks of ICON. All
geometry branches were trained for 10 epochs, while the texture branches for 5 epochs, and 495 scans from THuman2.0 [9]
were used for training dataset. The pre-/post-optimization algorithms of ICON are adopted and they are repeated 200 and 300
iterations with the stochastic gradient descent optimizer, respectively. For other methods, we inspect faces of output mesh
and remove isolated noise. Vertices connected less than 20% of the total number of vertices are considered noise and deleted.

3. Projection without λ
We introduce λ in the main manuscript to project the DF and DB into the center of the V . Without the scale regressor

reported in Table 6, gap incurs between DF and DB as shown in Figure 7. Since our model is dependent on V , training
becomes difficult without the scale regressor and λ.

Figure 1. Additional Results of the state-of-the-art methods using a single-view RGB input. (left) Front-/back-side normal maps and RGB
images from GT Mesh. (a) PIFu. (b) PaMIR. (c) ICON. (d) Ours.



Figure 2. Additional Results of the state-of-the-art methods using a single-view RGB input. (left) Front-/back-side normal maps and RGB
images from GT Mesh. (a) PIFu. (b) PaMIR. (c) ICON. (d) Ours.

Figure 3. Additional Results of the state-of-the-art methods using a single-view RGB input. (left) Front-/back-side normal maps and RGB
images from GT Mesh. (a) PIFu. (b) PaMIR. (c) ICON. (d) Ours.



Figure 4. Additional Results of the state-of-the-art methods using a single-view RGB input. (left) Front-/back-side normal maps and RGB
images from GT Mesh. (a) PIFu. (b) PaMIR. (c) ICON. (d) Ours.

Figure 5. Additional Results of the state-of-the-art methods using a single-view RGB input. (left) Front-/back-side normal maps and RGB
images from GT Mesh. (a) PIFu. (b) PaMIR. (c) ICON. (d) Ours.



Figure 6. Additional Results of the state-of-the-art methods using a single-view RGB input. (left) Front-/back-side normal maps and RGB
images from GT Mesh. (a) PIFu. (b) PaMIR. (c) ICON. (d) Ours.

Figure 7. An Ablation experiment of λ and the scale regressor. (a) Depth projection without the scale regressor. (b) Depth projection with
the scale regressor.



References
[1] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by exponential linear units

(elus). International Conference on Learning Representation (ICLR), 2016. 3
[2] Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis. Convolutional mesh regression for single-image human shape recon-

struction. In Proc. of Computer Vision and Pattern Recognition (CVPR), pages 4501–4510, 2019. 4
[3] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl: A skinned multi-person linear

model. ACM Trans. on Graph. (ToG), 34(6):1–16, 2015. 4
[4] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estimation. In Proc. of European Conf.

on Computer Vision (ECCV), pages 483–499. Springer, 2016. 3
[5] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned implicit

function for high-resolution clothed human digitization. In Proc. of Int’l Conf. on Computer Vision (ICCV), pages 2304–2314, 2019.
1

[6] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and
semantic manipulation with conditional gans. In Proc. of Computer Vision and Pattern Recognition (CVPR), pages 8798–8807, 2018.
4

[7] Yuxin Wu and Kaiming He. Group normalization. In Proc. of European Conf. on Computer Vision (ECCV), pages 3–19, 2018. 3
[8] Yuliang Xiu, Jinlong Yang, Dimitrios Tzionas, and Michael J Black. Icon: Implicit clothed humans obtained from normals. In Proc.

of Computer Vision and Pattern Recognition (CVPR), pages 13286–13296. IEEE, 2022. 1
[9] Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, and Yebin Liu. Function4d: Real-time human volumetric capture

from very sparse consumer rgbd sensors. In Proc. of Computer Vision and Pattern Recognition (CVPR), pages 5746–5756, 2021. 4
[10] Zerong Zheng, Tao Yu, Yebin Liu, and Qionghai Dai. Pamir: Parametric model-conditioned implicit representation for image-based

human reconstruction. IEEE Trans. on Pattern Anal. Mach. Intell. (TPAMI), 44(6):3170–3184, 2021. 1
[11] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial

networks. In Proc. of Int’l Conf. on Computer Vision (ICCV), pages 2223–2232, 2017. 4


	. Architectures
	. Network Complexity
	. Hallucinator
	. Depth Estimator
	. Occupancy Prediction Network
	. Texture Prediction Network

	. Additional Qualitative Results
	. Projection without 

