
Supplementary Material of
Efficient Hierarchical Entropy Model for Learned Point Cloud Compression

1. Implementation Details
1.1. Detailed Context Structure

The ancestral feature is defined as occupancy symbols,
level indices, octant indices, and parent coordinates col-
lected from node itself and its K = 3 ancestors. In practice,
only parent coordinates of the currently coded node are in-
troduced to simplify the context:

ai =
{
h∅
i ,hanc(i), . . . ,hanc(...anc(i)),bi

}
, (1)

where hi are 3-dimensional features including occupancy
symbol, level index, and octant index. bi are bounding box
coordinates of the currently coded node. Therefore, ai has
14 dimensions (3× (K +1)+ 3− 1) because h∅

i excludes
the occupancy symbol xi. We stack ancestral features of
N nodes within the same context window to generate the
ancestral context Ai as:

Ai = {ai−N+1, . . . ,ai} . (2)

1.2. Geometry-aware Feature Extractor

We adopt an octree-based geometry-aware feature ex-
tracting scheme to discover geometric features within each
local window. Its overall architecture is shown in Fig. 1. It
uses a DGCNN [1] to explore geometric features from par-
ent node coordinates of the currently coded node. Specif-
ically, it performs edge convolution on a dynamic graph,
where each node connects to its k = 20 nearest neighbors
in the feature space. Additionally, octree features are em-
bedded via MLPs and combined with geometric features.
The dynamic graph is updated using the aggregated features
to take both geometric features and node embeddings into
consideration.

1.3. Hierarchical Attention

The specific structure of the hierarchical self-attention
model is shown in Tab. 1. In our implementation, the con-
text window size N and local window length L are set to
8192 and 512, respectively. Therefore, the model is com-
posed of log2

N
L + 1 = 5 blocks that include 4, 4, 4, 4, 2

localized attention layers, respectively. In each block, T to-
kens are partitioned into W = T

L local windows. Features

A
n

ce
st

ra
l

F
ea

tu
re

s
P

ar
en

t 
C

oo
rd

in
at

es

E
d

ge
 C

on
v

M
L

P

M
L

P

E
d

ge
 C

on
v

E
d

ge
C

on
v

MLP

MLP

C C C

L × 11

L × 3

L × 32

L × 64

L × 64

L × 128 L × 256

L × 128

L × 128

C

L × 256

C C

Global Pooling
and Repeating

M
L

P
L × 256

G
eo

m
et

ry
-a

w
ar

e
F

ea
tu

re
s

Figure 1. Architecture of the geometry-aware feature extractor.

from 2t−1 × L nodes are incorporated into L = 512 tokens
in block t. In the last block, N nodes are represented with L
tokens, which are computed within the same local window.
It hence reaches the global receptive field.

The architecture of the hierarchical cross-attention
model is detailed in Tab. 2. In practice, we use a doubled
local window length L = 1024 for cross-attention. Each lo-
cal window computes dependencies between key and query
features with the size of L

2 = 512. Complexities for self-
attention and cross-attention are:

Ω(Self-attetnion) = 2× l × l × N

l
× C = 2lNC,

Ω(Cross-attention) = 2× L

2
× L

2
× N

L
× C =

L

2
NC.

(3)
Here, l and L are local window sizes for self-attention
and cross-attention, respectively. Therefore, cross-attention
with a doubled window length L = 2l still has lower com-
plexity compared with self-attention. The cross-attention
model includes 4 blocks with 2, 2, 1, 1 localized attention
layers. We shrink its capacity to improve the efficiency, but
it is still capable of preserving satisfactory performance.

1



Table 1. Detailed architecture of the hierarchical self-attention model. T and W indicate the number of tokens and local windows in the
corresponding block. L is the local window size fixed to 512. C and H represent channel dimensions and head numbers, respectively. MSA
denotes the multi-head self-attention module.

Block 1,
T8192,W16,L512

Block 2,
T4096,W8,L512

Block 3,
T2048,W4,L512

Block 4,
T1024,W2,L512

Block 5,
T512,W1,L512

Layer 1
MSA, C256, H4 MSA, C256, H4 MSA, C256, H4 MSA, C256, H4 MSA, C256, H4

MLP, C256 MLP, C256 MLP, C256 MLP, C256 MLP, C256
Window Shifting Window Shifting Window Shifting Window Shifting

Layer 2
MSA, C256, H4 MSA, C256, H4 MSA, C256, H4 MSA, C256, H4 MSA, C256, H4

MLP, C256 MLP, C256 MLP, C256 MLP, C256 MLP, C256
Reverse Shifting Reverse Shifting Reverse Shifting Reverse Shifting

Layer 3
MSA, C256, H4 MSA, C256, H4 MSA, C256, H4 MSA, C256, H4

MLP, C256 MLP, C256 MLP, C256 MLP, C256
Window Shifting Window Shifting Window Shifting Window Shifting

Layer 4
MSA, C256, H4 MSA, C256, H4 MSA, C256, H4 MSA, C256, H4

MLP, C256 MLP, C256 MLP, C256 MLP, C256
Reverse Shifting Reverse Shifting Reverse Shifting Reverse Shifting

Node Merging downsample 2×,
T4096, W8, C256

downsample 2×,
T2048, W4, C256

downsample 2×,
T1024, W2, C256

downsample 2×,
T512, W1, C256

Table 2. Detailed architecture of the hierarchical cross-attention model. MCA is the multi-head cross-attention module.

Block 1,
T8192,W8,L1024

Block 2,
T4096,W4,L1024

Block 3,
T2048,W2,L1024

Block 4,
T1024,W1,L1024

Layer 1
MCA, C256, H4 MCA, C256, H4 MCA, C256, H4 MCA, C256, H4

MLP, C256 MLP, C256 MLP, C256 MLP, C256
Window Shifting Window Shifting

Layer 2
MCA, C256, H4 MCA, C256, H4

MLP, C256 MLP, C256
Reverse Shifting Reverse Shifting

Node Merging downsample 2×,
T4096, W4, C256

downsample 2×,
T2048, W2, C256

downsample 2×,
T1024, W1, C256

0 1 2 3 4 5 6 7 8 9 10 11

Bits Per Point

60

65

70

75

80

85

90

D
1 

PS
N

R
 (d

B
)

Bitrate vs. D1 PSNR (KITTI)

EHEM, N=8192
EHEM, N=1024
Pure Self-Attn
EHEM w/o siblings
Pure Cross-Attn

Figure 2. Ablation studies on sibling prior and attention model
structure.

Table 3. Bpp for lossless compression on the 8iVFB dataset.

Method G-PCC OctAttention EHEM
Loot10 0.95 0.62 0.58

Redandblack10 1.09 0.73 0.69
Boxer10 0.94 0.59 0.55

Thaidancer10 0.99 0.65 0.62
Average 0.99 0.65 0.61

2. Additional Experiments

2.1. Additional Ablation Studies

Sibling Prior Although exploiting sibling priors causes a
two-step coding process, it is effective to boost the com-
pression performance. We build an EHEM variant which
predicts xi2 based on ancestral context Ai without intro-
ducing sibling priors xi1 . As shown in Fig. 2, sibling priors
bring considerable performance improvements.



0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Normalized dependency intensity of neighbors at differ-
ent positions.

Attention Model Structure We build two EHEM variants
to validate the effects of self-attention and cross-attention.
In Pure Self-Attn, a hierarchical self-attention model re-
places the cross-attention one to compute sibling features.
In Pure Cross-Attn, p̃(xi1) is directly predicted based on
Fa

i1
without performing hierarchical self-attention, then Fa

i

and xi1 are passed to the hierarchical cross-attention branch
to estimate p̃(xi2). These two variants are implemented
with N = 1024. In Fig. 2, the comparison between
EHEM (N=1024) and Pure Self-Attn shows that cross-
attention works slightly better than self-attention in aggre-
gating sibling features. Meanwhile, the gap between EHEM
(N=1024) and Pure Cross-Attn suggests that it is necessary
to perform hierarchical self-attention to enhance ancestral
features.

2.2. Dense Point Clouds

Results on dense point cloud dataset 8iVFB are shown in
Tab. 3. EHEM still outperforms OctAttention and G-PCC
at dense point clouds.

2.3. Additional Complexity Analysis

We further test the runtimes of EHEM using a TITAN Xp
GPU. Results in Tab. 4 shows that EHEM is still practical
on this less powerful GPU.

2.4. Quantitative Dependencies

In the main paper (Fig.4), we provide a visualization of
ancestral dependencies among the first 16 nodes in the local
window. Here, in Fig. 3, we report quantitative normalized
dependency scores across the whole local window with L =
512. The attention score matrix has been shifted to make all
currently coded nodes located at the index of 256. It proves
that closer nodes are more informative.

Table 4. Encoding/decoding times (in seconds) on SemanticKITTI
with a TITAN Xp GPU.

Method D=12 D=14 D=16
EHEM 0.59 / 0.65 1.99 / 2.08 4.30 / 4.43

Light EHEM 0.42 / 0.46 1.26 / 1.43 2.67 / 3.11

References
[1] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On
Graphics, 38(5):1–12, 2019. 1


	. Implementation Details
	. Detailed Context Structure
	. Geometry-aware Feature Extractor
	. Hierarchical Attention

	. Additional Experiments
	. Additional Ablation Studies
	. Dense Point Clouds
	. Additional Complexity Analysis
	. Quantitative Dependencies


