
Appendix of “Learning with Fantasy: Semantic-Aware Virtual Contrastive
Constraint for Few-Shot Class-Incremental Learning”

This Appendix first provides detailed experimental results on the three benchmarks in Sec. A. The performance with
different fantasy methods is reported in Sec. B. Discussion on different contrastive methods and inference methods can be
found in Sec. C and Sec. D, respectively. The training algorithm is elaborated in Sec. E. We finally discuss the limitations in
Sec. F.

A. Detailed Results
A.1. Comparison with State of The Arts

In Sec. 4.2 Fig. 4, we provide the comparison with the state-of-the-art methods on three benchmarks in the form of line
charts. Here we present the detailed numbers and compare our SAVC with more methods, including: naı̈ve baseline that
directly finetunes the model with limited data as ‘finetune’, classical CIL methods, i.e., iCaRL [11], EEIL [1], Rebalanc-
ing [7], incremental-trainable FSCIL methods, i.e., TOPIC [13], FSLL+SS [9], IDLVQ-C [2], and incremental-frozen FSCIL
methods, i.e., SPPR [21], F2M [12], CEC [16], MetaFSCIL [5], FACT [18], LIMIT [19]. We first give a detailed introduction
about these methods, then show the detailed results in Tabs. 1 to 3.

Table 1. Comparison with SOTA methods on CIFAR100 dataset for few-shot incremental learning. ∗: Performances reported by [13].
∆last: Relative improvements of the last session compared to the Finetune baseline.

Method Acc. in each session (%) ↑
∆last0 1 2 3 4 5 6 7 8

Finetune∗ [13] 64.10 39.61 15.37 9.80 6.67 3.80 3.70 3.14 2.65 −
iCaRL∗ [11] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 +11.08

EEIL∗ [1] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 +13.20
Rebalancing∗ [7] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 +10.89

TOPIC∗ [13] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 +26.72
FSLL+SS [9] 66.76 55.52 52.20 49.17 46.23 44.64 43.07 41.20 39.57 +36.92

SPPR [21] 63.97 65.86 61.31 57.60 53.39 50.93 48.27 45.36 43.32 +40.67
F2M [12] 64.71 62.05 59.01 55.58 52.55 49.96 48.08 46.28 44.67 +42.02
CEC [16] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 +46.49

MetaFSCIL [5] 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 +47.32
FACT [18] 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10 +49.45
LIMIT [19] 73.81 72.09 67.87 63.89 60.70 57.77 55.67 53.52 51.23 +48.58

SAVC (Ours) 78.77 73.31 69.31 64.93 61.70 59.25 57.13 55.19 53.12 +50.47

• Finetune. It directly finetunes the model with cross-entropy (CE) loss in incremental sessions, and cannot strike the
stability and plasticity trade-off well.

• iCaRL [11]. It maintains an “episodic memory” of the exemplars, which enables to incrementally learn new classes
without forgetting old classes.

• EEIL [1]. It considers an end-to-end framework, combining a distillation loss to retain old knowledge and a cross-
entropy term to learn the new classes.
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Table 2. Comparison with SOTA methods on miniImageNet dataset for few-shot incremental learning. ∗: Performances reported by [13].
∆last: Relative improvements of the last session compared to the Finetune baseline.

Method Acc. in each session (%) ↑
∆last0 1 2 3 4 5 6 7 8

Finetune∗ [13] 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.60 1.40 −
iCaRL∗ [11] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 +15.81

EEIL∗ [1] 61.31 46.58 44.00 37.29 33.14 27.12 24.1 21.57 19.58 +18.18
Rebalancing∗ [7] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 +12.77

TOPIC∗ [13] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 +23.02
FSLL+SS [9] 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92 +42.52
IDLVQ-C [2] 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84 +40.44

SPPR [21] 61.45 63.80 59.53 55.53 52.50 49.60 46.69 43.79 41.92 +40.52
F2M [12] 67.28 63.80 60.38 57.06 54.08 51.39 48.82 46.58 44.65 +43.25
CEC [16] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 +46.23

MetaFSCIL [5] 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 +47.79
FACT [18] 72.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49 +49.09
LIMIT [19] 72.32 68.47 64.30 60.78 57.95 55.07 52.70 50.72 49.19 +47.79

SAVC (Ours) 81.12 76.14 72.43 68.92 66.48 62.95 59.92 58.39 57.11 +55.71

Table 3. Comparison with SOTA methods on CUB200 dataset for few-shot incremental learning. ∗: Performances reported by [13]. ∆last:
Relative improvements of the last session compared to the Finetune baseline.

Method Acc. in each session (%) ↑
∆last0 1 2 3 4 5 6 7 8 9 10

Finetune∗ [13] 68.68 43.70 25.05 17.72 18.08 16.95 15.10 10.06 8.93 8.93 8.47 −
iCaRL∗ [11] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 +12.69

EEIL∗ [1] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 +13.64
Rebalancing∗ [7] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 +11.40

TOPIC∗ [13] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 +17.81
FSLL+SS [9] 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82 +47.35
IDLVQ-C [2] 77.37 74.72 70.28 67.13 65.34 63.52 62.10 61.54 59.04 58.68 57.81 +49.34

SPPR [21] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 +28.86
F2M [12] 81.07 78.16 75.57 72.89 70.86 68.17 67.01 65.26 63.36 61.76 60.26 +51.79
CEC [16] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 +43.81

MetaFSCIL [5] 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 +44.17
FACT [18] 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 +48.47
LIMIT [19] 75.89 73.55 71.99 68.14 67.42 63.61 62.40 61.35 59.91 58.66 57.41 +48.94

SAVC (Ours) 81.85 77.92 74.95 70.21 69.96 67.02 66.16 65.30 63.84 63.15 62.50 +54.03

• Rebalancing [7]. It learns a unified classifier to address the imbalance problem, which consists of three compo-
nents, i.e., cosine normalization, less-forget constraint and inter-class separation.

• TOPIC [13]. It mitigates forgetting by utilizing a Neural Gas (NG) network to preserve the topology of the feature
manifold formed by different classes.

• FSLL+SS [9]. It selects very few unimportant parameters to update for training every new set of classes, while
explicitly maximizing old and new classes separation to prevent them from overlapping with each other.

• IDLVQ-C [2]. It develops a unified incremental deep learning vector quantization framework and mitigates catas-
trophic forgetting by intra-class variance regularization, less forgetting constraints and calibration factors.



• SPPR [21]. It employs a random episode selection strategy and a self-promoted prototype refinement mechanism,
which equips the features with extensibility to incremental tasks.

• F2M [12]. It searches the flat local minima of the base training objective function so that the model can be updated
within the flat region on incremental tasks.

• CEC [16]. It trains a graph model as a classifier adaptation module to propagate context information between old and
new prototypes. The adaptation module is trained by sampling pseudo incremental learning tasks in the base session.

• MetaFSCIL [5]. It proposes to sample sequences of incremental tasks and optimize a meta-objective guided by a
bi-directional guided modulation, so that the model is capable of fast adapting to novel classes without forgetting.

• FACT [18]. It pre-assigns multiple virtual prototypes and generates virtual instances via instance mixture in the
embedding space, to reserve spaces for incoming new classes.

• LIMIT [19]. It encourages the model to learn multi-phase incremental tasks synthesized in the base session. Besides,
a transformer is used to calibrate the old and new prototypes into the same semantic scale.

A.2. Performance Measure of Base Classes and New Classes

In this work, we compare the Top 1 accuracy in the last session, i.e. AT, to measure the final performance in all
classes. [16] has defined a performance dropping rate (PD) to measure the absolute accuracy drop in the last session, i.e.,
PD = A0 −AT. Here, we decompose the accuracy in the last session AT into the accuracy of base classes ATB and new
classes ATN, define PDB = A0 −ATB to quantitatively measure the forgetting phenomena (because there are only base
classes in the base session), and directly compare ATN to measure the adaptation to novel classes. The results are reported
in Tabs. 4 to 6.

From the results, we observe that our SAVC significantly improves the accuracy of both base classes and novel classes,
and boosts the overall performance more on novel classes compared with the CE baseline. On the one hand, Our SAVC
outperforms other approaches on novel classes (ATN) by a large margin, which verifies its effectiveness on novel class
adaptation. On the other hand, SAVC acquires the best accuracy on base classes in the last session (ATB), and comparable
base performance dropping rate (PDB) with other SOTA methods, which shows that our SAVC could maintain base class
separation well and mitigate the catastrophic forgetting problem effectively.

Table 4. Performance measure of base and new classes on CIFAR100 dataset. †: Results from our implementation by the official published
code. −: Results not reported in [18] or [19]. The improvement or degradation related to CE is shown in brackets.

Method A0 AT ATB ATN PDB ↓
CE 73.00 46.47 67.92 14.30 5.08

CEC† [16] 73.07 (+0.07%) 49.10 (+2.63%) 67.90 (-0.02%) 20.90 (+6.60%) 5.17 (+0.09%)
FACT [18] 74.60 (+1.60%) 52.10 (+5.63%) − − −
LIMIT [19] 73.81 (+0.81%) 51.23 (+4.76%) − − −

SAVC (Ours) 78.77 (+5.77%) 53.12 (+6.65%) 73.07 (+5.15%) 23.20 (+8.90%) 5.70 (+0.62%)

Table 5. Performance measure of base and new classes on miniImageNet dataset. †: Results from our implementation by the officially
published code. −: Results not reported in [18] or [19]. The improvement or degradation related to CE is shown in brackets.

Method A0 AT ATB ATN PDB ↓
CE 70.43 45.80 67.23 13.65 3.20

CEC† [16] 72.25 (+1.82%) 47.67 (+1.87%) 67.97 (+0.74%) 17.23 (+3.58%) 4.28 (+1.08%)
FACT [18] 72.56 (+2.13%) 50.49 (+4.69%) − − −
LIMIT [19] 72.32 (+1.89%) 49.19 (+4.69%) − − −

SAVC (Ours) 81.12 (+10.69%) 57.11 (+11.31%) 74.67 (+7.44%) 30.78 (+17.13%) 6.45 (+3.25%)



Table 6. Performance measure of base and new classes on CUB200 dataset. †: Results from our implementation by the officially published
code. The improvement or degradation related to CE is shown in brackets.

Method A0 AT ATB ATN PDB ↓
CE 74.42 47.84 69.87 26.35 4.55

CEC† [16] 75.68 (+1.26%) 52.12 (+4.28%) 70.46 (+0.59%) 34.23 (+7.88%) 5.21 (+0.66%)
FACT [18] 75.90 (+1.48%) 56.94 (+9.10%) 73.90 (+4.03%) 40.50 (+14.15%) 2.00 (-3.55%)
LIMIT [19] 75.89 (+1.47%) 57.41 (+9.57%) 73.60 (+3.73%) 41.80 (+15.45%) 2.29 (-2.26%)

SAVC (Ours) 81.85 (+7.43%) 62.50 (+14.66%) 77.65 (+7.78%) 47.68 (+21.33%) 4.20 (-0.35%)

B. Discussion on Fantasy Methods
B.1. Discussion on SSL transformations

In Sec. 4.1 Fig. 6a, we have compared three SSL transformation methods and found that the choice of transformation
methods is crucial to the success of our algorithm. We adopt more transformation methods and conduct comprehensive
experiments on miniImageNet to study their impacts. Experimental results in Tab. 7 indicate that the performance would
show little improvement with the limited number of transformations (M = 2) or without proper rotation transformations.
Meanwhile, the performance can be degraded under too many transformations (M = 24).

Table 7. Comparison of different transformation methods on miniImageNet dataset for few-shot incremental learning. ∆last: Relative
improvements of the last session compared to the CE baseline. ‘ALL’ in ‘Rotation’ denotes using all 0°, 90°, 180°, 270° degrees, and in
‘Color permutation’ denotes using all RGB, RBG, GRB, GBR, BRG, BGR permutations.

Method Rotation Color
permutation

Acc. in each session (%) ↑
∆last0 1 2 3 4 5 6 7 8

CE − − 70.27 65.17 61.13 57.80 54.80 51.84 49.14 47.03 45.54 −
3-permutations 0° RGB, GBR, BRG 76.85 72.31 68.31 64.40 61.60 58.31 55.32 53.35 52.33 +6.79
6-permutations 0° ALL 77.07 71.95 67.86 64.25 61.31 58.08 55.46 53.68 52.63 +7.09
2-fold rotations 0°, 180° RGB 77.52 72.32 68.43 65.20 62.86 59.65 56.84 54.87 53.71 +8.17
6-augmentations 0°, 180° RGB, GBR, BRG 79.42 74.43 70.19 66.71 64.01 60.25 57.51 55.56 54.64 +9.10
24-augmentations ALL ALL 80.75 75.37 71.57 67.55 64.96 61.34 58.12 56.31 54.96 +9.42
4-fold rotations ALL RGB 80.77 76.19 72.36 69.03 66.60 63.21 60.11 58.25 57.01 +11.47

12-augmentations ALL RGB, GBR, BRG 81.12 76.14 72.43 68.92 66.48 62.95 59.92 58.39 57.11 +11.57

B.2. Discussion on instance mixture methods

Apart from SSL transformation methods, there are other instance mixture ways to generate virtual classes, such as vanilla
mixup [17] and manifold mixup [14] that previous works [18,20] have explored. In contrast to traditional mixup augmentation
which has been considered unsuitable for incremental tasks [10], [20] randomly shuffles every mini-batches several times
in the training dataset and combines the corresponding two images with the same index but different labels to generate new
virtual classes. Hence the |C0|-class problem in the base task can be extended to a |C0| + |C0|(|C0| − 1)/2-class problem,
while we generate |C0|(|C0| − 1)/2 virtual classes with fewer samples than the original classes. The mixture coefficient is
bounded in the range of [0.4, 0.6], which keeps the virtual samples away from the original samples in visual. At the end of
the training of the base stage, these mixup nodes in the classifier would be removed.

We explore the influence of different instance mixture methods, including vanilla mixup [17], manifold mixup [14] and
CutMix [15] on miniImageNet dataset. The results are shown in Tab. 8. Obviously, our framework benefits more from SSL
transformation than instance mixture, and we suppose the reasons lie in two folds: 1) SSL transformation enlarges the label
space by M times, and every derived class has the same number of samples as the original classes. However, instance mixture
generates extra |C0|(|C0| − 1)/2 classes with very less samples, which may cause overfitting on the virtual classes. 2) These
virtual classes generated by SSL transformation have exact ‘fine-grained’ semantic meaning and enable a multi-semantic
aggregated inference effect. But instance mixture generates virtual classes lacking ‘semantic logic’ which are unavailable for
future inference or generalization.



Table 8. Comparison of different instance mixture methods on miniImageNet dataset for few-shot incremental learning. ∆last: Relative
improvements of the last session compared to the CE baseline.

Method Acc. in each session (%) ↑
∆last0 1 2 3 4 5 6 7 8

CE 70.27 65.17 61.13 57.80 54.80 51.84 49.14 47.03 45.54 −
Vanilla 78.00 71.63 67.37 63.75 60.69 57.68 54.89 52.54 50.67 +5.13

Manifold 77.35 71.25 67.04 63.52 60.49 57.19 54.64 52.46 50.77 +5.23
CutMix 78.00 72.95 68.71 64.87 61.53 58.18 55.44 53.46 51.59 +6.05

12-augmentations 81.12 76.14 72.43 68.92 66.48 62.95 59.92 58.39 57.11 +11.57

C. Discussion on Contrastive Methods
In this section, we give an analysis of different contrastive methods from the gradient perspective. We mainly consider

three forms of loss function, i.e., unsupervised contrastive loss, supervised contrastive loss (Sec. 3.2 Eq. (3)) and our
semantic-aware virtual contrastive loss (Sec. 3.3 Eq. (8)). They are all built on MoCo [3, 4, 6] framework.

• Unsupervised contrastive loss. Given a query embedding q, it only regards its key embedding as positives and all in
feature queue Q are negatives:

Luncont (g;x, τ, A) = −log
exp

(
qTk+/τ

)
exp (qTk+/τ) +

∑
k−∈N(x)

exp (qTk−/τ)
, (1)

where N(x) = Q. Then we can obtain the gradient w.r.t. the query sample q:

∂Luncont

∂q
= −1

τ

(1− pk+
)k+ −

∑
k−∈N(x)

pk−k−

 , (2)

where pki
= exp

(
qTki/τ

)
/
∑

ki∈A(x) exp
(
qTki/τ

)
, A(x) = P (x)∪N(x) is the embedding pool to select positives

and negatives. It indicates that optimizing Eq. (1) would push the query embedding q towards the direction of its key
embedding k, and away from all embeddings in the feature queue, which would cause unexpected high intra-class
entropy.

• Supervised contrastive loss. It regards the key embeddings in the feature queue which share the same label as the
query sample as additional positives, and we only consider the form that summation is located outside the log [8]:

Lsupcont (g;x, τ, A) = − 1

|P (x)|
∑

k+∈P (x)

log
exp

(
qTk+/τ

)∑
k+∈P (x)

exp (qTk+/τ) +
∑

k−∈N(x)

exp (qTk−/τ)
. (3)

Then we can obtain the gradient w.r.t. the query sample q:

∂Lsupcont

∂q
= −1

τ


(

1

|P (x)|
− pk+

)
k+ −

∑
k−∈N(x)

pk−k−

 . (4)

Here, N(x) only includes key embeddings belonging to different classes with the query sample q in the queue. Com-
pared to Eq. (2), Eq. (4) corrects the optimization directions which these potential positives in the queue contribute
to, that is, pushing q towards rather than away from them. When |P (x)| = 1, Eq. (3) degrades into Eq. (1).

• Semantic-aware virtual contrastive loss. It generates many virtual classes by applying pre-defined SSL transforma-



tions, and enables contrast in finer semantic grains:

Lsavcont (g;x, τ, A,F)

= − 1

M

M∑
m=1

1

|P (xm)|
∑

k+∈P (xm)

log
exp

(
qTk+/τ

)∑
k+∈P (xm)

exp (qTk+/τ) +
∑

k−∈N(xm)

exp (qTk−/τ) +
∑
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exp
(
qTk̄−/τ

) .
(5)

Here, we split the negative set into N(xm) which contains key embeddings from the queue sharing different original
classes but the same transformation type with q, and N̄(xm) which contains key embeddings from the queue sharing
different transformation type with q. Indeed, N̄(xm) can be regarded as a complementary hard negative set and plays
an important role in the contrastive training process, especially those negatives which share the same original class but
different transformation type with q. Thus we can obtain the gradient w.r.t. the query sample q:

∂Lsavccont

∂q
= − 1

M

M∑
m=1

1

τ


(

1

|P (xm)|
− pk+

)
k+ −

∑
k−∈N(xm)

pk−k− −
∑

k̄−∈N̄(xm)

pk̄−
k̄−

. (6)

Compared to Eq. (4), Eq. (6) adds additional gradients by virtual hard negatives and pushes q away from them. When
M = 1, Eq. (5) degrades into Eq. (3).

Algorithm 1 Semantic-Aware Class Fantasy Training
Input: Base train dataset D0

train, Fantasy set F , Hyperparameters: coefficients α and β
Output: Classification model: ϕ, Query network: g, Key network: gm, Feature queue and label queue
1: Randomly initialize ϕ, g, gm, Feature queue and label queue
2: for iter = 1, 2, ..., do
3: Get a mini-batch sample from D0

train: B = {(xi, yi)}Ni=1

4: Generate virtual classes: F(B) = {(xim, yim)}N,M
i=1,m=1

5: Calculate classification loss:
Lcls(ϕ;F(B)) = 1

|F(B)|
∑

(xim, yim)∈F(B) Lce (ϕ (xim) , yim)

6: Generate query and key embeddings:
Bq = {qim ∈ g(Augq(xim))|xim ∈ F(B)}
Bk = {kim ∈ gm(Augk(xim))|xim ∈ F(B)}

7: Calculate global and local contrastive loss:

Lcont (g;Bq, τ, A) = − 1
|Bq|

∑
qim∈Bq

{
1

|P (xim)|
∑

k+∈P (xim)log
exp(qT

imk+/τ)∑
k
′∈A(xim)

exp(qT
imk′/τ)

}
8: Get the total loss:

L = Lcls + αLcont global + βLcont local

9: Obtain derivative and update ϕ and g;
10: Momentum update gm by g
11: Update feature and label queue
12: end
13: for class c in C0 do
14: Get all samples in D0

train belonging to class c: Bc = {xc,i}n
0
c

i=1

15: Generate virtual classes: F(Bc) = {xc,im}n
0
c,M

i=1,m=1
16: Replace the classifier with prototypes:

W 0
c =

{
w0

cm ∈ 1
n0
c

∑n0
c

i=1 f (xc,im)

∣∣∣∣xc,im ∈ F(Bc)

}M

m=1

17: end



Algorithm 2 Multi-Semantic Aggregated Inference
Input: Base test dataset D0

test, Fantasy set F , Classification model: ϕ
Output: Inference results C
1: for j = 1, 2, ..., do
2: Get the mini-batch test sample in order from D0

test: B
j = {xi}Ni=1

3: Generate virtual classes: F(Bj) = {xim}N,M
i=1,m=1

4: Initialize the prediction result P j = [0] ∈ R|C0|×N

5: for m = 1, 2, ...,M do
6: Form a normalized conditional sample and a normalized prototype subset:

Xm =
{
xim ∈ F(Bj)

}N

i=1
, X̃m = Norm(Xm, 0)

W 0
m =

{
w0

cm ∈ W 0
}|C0|
c=1

, W̃ 0
m = Norm(W 0

m, 0)
7: Calculate the inference logits from m-th fantasy view:

Pm = W̃ 0
m

Tf(X̃m)

8: end
9: Aggregate the inference logits and results:

P j = 1
M

∑M
m=1 Pm

Cj = argmax(P j , 0)

10: end

D. Discussion on Inference Methods
As shown in Sec. 3.3 Eq. (9), we ensemble inference results from different views to boost performance. Owing to our

specific multi-view learning scheme, the inference should also follow the same rules. When degrading our multi-semantic
aggregated inference method to the original inference method, the last session accuracy changes from 57.11% to 52.79%
on miniImageNet dataset. It further demonstrates that virtual classes act as semantic knowledge providers which encourage
extensive learning of different semantics for better generalization.

E. Pseudo-code of SAVC
We show the pseudo-code of our SAVC method of training and inference part respectively. The semantic-aware class fan-

tasy training part is concluded in Algorithm 1, and the multi-semantic aggregated inference part is concluded in Algorithm 2.

F. Limitation
Although we have developed our SAVC based on the observation that base class separation facilitates novel class gener-

alization, the underlying reason lies in it remains unknown. In addition, there may be other better ways to generate virtual
classes by other newly-proposed advanced augmentation techniques. Besides, exploring the class fantasy in feature spaces is
also a promising direction. We leave them for our future work.
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[1] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari. End-to-end incremental learning.

In ECCV, pages 233–248, 2018. 1, 2
[2] Kuilin Chen and Chi-Guhn Lee. Incremental few-shot learning via vector quantization in deep embedded space. In ICLR, 2020. 1, 2
[3] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive learning. arXiv preprint

arXiv:2003.04297, 2020. 5
[4] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers. In ICCV, pages

9640–9649, 2021. 5
[5] Zhixiang Chi, Li Gu, Huan Liu, Yang Wang, Yuanhao Yu, and Jin Tang. Metafscil: A meta-learning approach for few-shot class

incremental learning. In CVPR, pages 14166–14175, 2022. 1, 2, 3
[6] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation

learning. In CVPR, pages 9729–9738, 2020. 5
[7] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier incrementally via rebalancing.

In CVPR, pages 831–839, 2019. 1, 2



[8] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip
Krishnan. Supervised contrastive learning. In NeurIPS, pages 18661–18673, 2020. 5

[9] Pratik Mazumder, Pravendra Singh, and Piyush Rai. Few-shot lifelong learning. In AAAI, volume 35, pages 2337–2345, 2021. 1, 2
[10] Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Essentials for class incremental learning. In CVPR, pages 3513–3522, 2021. 4
[11] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and represen-

tation learning. In CVPR, pages 2001–2010, 2017. 1, 2
[12] Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan, and Xiao-Ming Wu. Overcoming catastrophic forgetting in incremental

few-shot learning by finding flat minima. In NeurIPS, pages 6747–6761, 2021. 1, 2, 3
[13] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yihong Gong. Few-shot class-incremental learning. In

CVPR, pages 12183–12192, 2020. 1, 2
[14] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Bengio. Manifold

mixup: Better representations by interpolating hidden states. In ICML, pages 6438–6447. PMLR, 2019. 4
[15] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy

to train strong classifiers with localizable features. In ICCV, pages 6023–6032, 2019. 4
[16] Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, and Yinghui Xu. Few-shot incremental learning with continually evolved

classifiers. In CVPR, pages 12455–12464, 2021. 1, 2, 3, 4
[17] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. arXiv

preprint arXiv:1710.09412, 2017. 4
[18] Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward compatible few-shot class-

incremental learning. In CVPR, pages 9046–9056, 2022. 1, 2, 3, 4
[19] Da-Wei Zhou, Han-Jia Ye, Liang Ma, Di Xie, Shiliang Pu, and De-Chuan Zhan. Few-shot class-incremental learning by sampling

multi-phase tasks. TPAMI, 2022. 1, 2, 3, 4
[20] Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-lin Liu. Class-incremental learning via dual augmentation. In NeurIPS, pages

14306–14318, 2021. 4
[21] Kai Zhu, Yang Cao, Wei Zhai, Jie Cheng, and Zheng-Jun Zha. Self-promoted prototype refinement for few-shot class-incremental

learning. In CVPR, pages 6801–6810, 2021. 1, 2, 3


	. Detailed Results
	. Comparison with State of The Arts
	. Performance Measure of Base Classes and New Classes

	. Discussion on Fantasy Methods
	. Discussion on SSL transformations
	. Discussion on instance mixture methods

	. Discussion on Contrastive Methods
	. Discussion on Inference Methods
	. Pseudo-code of SAVC
	. Limitation

