
Supplementary Material

The implementation details are introduced first. Then we
show more visualization results for the feature distributions
shown in Fig. 4 and mean attention distances shown in Fig.
5. Finally, we present more experimental results.

A. Implementation Details

A.1. Pre-training on ImageNet

Data Augmentation. The data augmentations consist of
random cropping (with a scale of 0.25-1.0), resizing to 224×
224, random horizontal flip, gaussian blur, and color jittering.
The local augmentations for the multi-crop strategy consist
of random cropping (with a scale of 0.05-0.25), resizing to
96 × 96, random horizontal flip, gaussian blur, and color
jittering. Two global views and eight local views are used in
all pre-taining experiments.
Training. During the pre-training procedure, we follow
the most hyper-parameters setting of DINO [5]. Without a
specific statement, the default batch size is 256. The SGD
and AdamW [35] optimizers are used for ResNet and ViT,
respectively. The learning rate is linearly warmed up to its
base value during the first 10 epochs. And the base learning
rate is set to 0.1 and 0.0003 for ResNet and ViT, respectively.
After the warm-up procedure, the learning rate is decayed
with a cosine schedule [34]. The weight decay is set to
1e − 4 and 0.04 for ResNet and ViT, respectively. For the
temperatures, τ is set to 0.1, and a linear warm-up from 0.04
to 0.07 is set to τ ′ during the first 30 epochs. Following
DINO [5], the centering operation is applied to the output
of the momentum encoders to avoid collapse. λ1 and λ2 in
Eq. (9) are set to 1 and 0.1 for the larger and smaller models,
respectively. While for model pairs with the same backbone,
λ1 and λ2 are set to 1.

A.2. k-NN and Linear Probing on ImageNet

After pre-training, the k-NN and linear probing are em-
ployed to evaluate the representation performance. For k-
NN, it is implemented based on DINO [5]. We report the
best result among k = 10, 20, 100, 200.

For linear probing, a linear classifier added to the frozen
backbone is trained [21]. The linear classifier is trained with
the SGD optimizer and a batch size of 2048 for 100 epochs
on the ImageNet training set. The learning rate is linearly
warmed up to its base value during the first 10 epochs. And
the base learning rate is set to 0.08 and 0.008 for ResNet
and ViT, respectively. After the warm-up stage, the learning
rate is decayed with a cosine schedule [34]. Weight decay is
not used. The input resolution is 224× 224 during training
and testing.

A.3. Semi-Supervised Learning on ImageNet

We use the 1% and 10% subsets of the ImageNet
[41] training set for fine-tuning, which follows the semi-
supervised protocol in [8]. The same splits of 1% and 10%
of ImageNet training set in [9] are used. Models are fine-
tuned with 1024 batch size for 60 epochs and 30 epochs on
1% and 10% subsets, respectively. The SGD optimizer is
adopted. The learning rate is linearly warmed up to its base
value during the first 5 epochs. And the best base learning
rate is searched for each model. After the warm-up proce-
dure, the learning rate is decayed with a cosine schedule [34].
The input resolution is 224× 224 during training and testing.

A.4. Fine-tuning on Cifar10/Cifar100

Most settings keep the same with the experiments of semi-
supervised learning on ImageNet except for the training
epochs. On Cifar10/100, the warming-up epoch is set to 10,
and the training epoch is set to 100.

A.5. Fine-tuning on COCO

Following [15], The C4-based Mask R-CNN [22] detector
is used for objection detection and instance segmentation
on COCO. The model is trained for 180k iterations, i.e., the
2× schedule. The SGD optimizer is adopted. The initial
learning rate is set to 0.02. The scale of images for training
is set as [600, 800] and 800 at inference. We report APb,
APb

50, and APb
75 for object detection and APs, APs

50, and
APs

75 for instance segmentation.

B. More Visualizations
B.1. T-SNE Visualization of Feature Distribution

Following Fig. 4, more model pairs, including two
ResNets and two ViTs are visualized. As shown in Fig. S1,
the model pairs (R50-R34 and ViT-S-ViT-T) trained by
MOKD also show different feature distributions, demon-
strating that MOKD does not make models more similar. In
addition, we can see that the feature distributions of R34 and
ViT-T get better when trained with MOKD.

B.2. Mean Attention Distances

In Fig. 5, we show the mean attention distances [13] of
ViT-S, R50, and R101 trained independently (by DINO) and
trained by MOKD. For ResNets, when trained with ViTs,
i.e., R50-ViT-S, R5O-ViT-B, R101-ViT-S, and R101-ViT-
B, the ResNet models trained by MOKD turns to be more
“global". However, this phenomenon is not shown in two
ResNet model pairs trained by MOKD, i.e., R50-R34, R50-
R18, R101-R34, and R101-R18. As shown in Fig. S2, we
show more mean attention distances of ViTs. Compared
with the ViT models trained independently (as shown in
Fig. S2(a)(e)), the mean attention distances on deep layers
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Figure S1. T-SNE [46] visualization of feature distributions on ImageNet100. Ten categories (shown in different colors) are randomly
selected for better visualization. Different color denotes different category and different marker denotes different model.
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(a) ViT-S (Independent).
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(b) ViT-S (MOKD with R101).
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(c) ViT-S (MOKD with ViT-S).
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(d) ViT-S (MOKD with ViT-T).
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(e) ViT-B (Independent).
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(f) ViT-B (MOKD with R50).
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(g) ViT-B (MOKD with R101).

Figure S2. Mean attention distances [13] of different models.

(layer 10-12) of the ViT models trained with ResNet models
(as shown in Fig. S2(b)(f)(g)) decrease, which indicates that
the ViT-S model trained by MOKD turns to be more “local"
on deep layers. This phenomenon is not shown in two ViT
models trained by MOKD, as shown in Fig. S2(c)(d). These
observations show that two heterogeneous models absorb
knowledge from each other: ViT model learns more locality
while CNN model learns more global information.

C. More Experiments

C.1. Results on Other Convnets

We conduct experiments on EfficientNet-B0 [42] and
MobileNet-v3-Large [26]. Following DisCo [16], R50 and

R101 are selected as the larger models. We pre-train MOKD
with 256 batch size for 100 epochs on ImageNet. As shown
in Tab. S1, MOKD brings consistent improvements over
different model pairs. It achieves the best performance for
EfficientNet-B0 [42] and MobileNet-v3-Large [26].

C.2. Influence of T-Head Depth

T-Head is added for cross-attention feature search in
MOKD. As shown in Tab. S2, increasing T-Head depth
(number of transformer blocks) improves the performance
of MOKD. However, extra computation costs brought by
T-Head should be controlled. Thus, T-Head depth should be
small and set to 3 in this study.



Method R50 Eff-b0 R50 Mob-v3 R101 Eff-b0 R101 Mob-v3
SEED [15] 67.4 61.3 67.4 55.2 70.3 63.0 70.3 59.9
ReKD [58] 67.6 63.4 67.6 56.7 69.7 65.0 69.7 59.6
DisCo [16] 67.4 66.5 67.4 64.4 69.1 68.9 69.1 65.7
MOKD 72.5 69.2 72.2 66.0 74.9 70.1 74.7 67.2

Table S1. Results on other convnets.

Depth 1 2 3
R50, ViT-S 87.4, 83.3 88.1, 84.1 88.3, 84.6

Table S2. Influence of T-Head depth.

Method Backbones Time (h) Mem.(G) LP
DINO [5] R50/ViT-S 97+94 6.4+6.3 72.1/73.8
MOKD R50-ViT-S 122 13.5 74.1/74.4

Table S3. Training Time and Memory Requirement.

C.3. Training Time and Memory Requirement

We show the total training time and peak memory per
GPU (“mem.”) when training ViT-S model pairs on an 8
V100 GPU machine. We pre-train DINO [5] and MOKD
with 256 batch size for 100 epochs on ImageNet. From
Tab. S3, we can tell that the total memory requirement
and training time of training two models independently via
DINO [5] are comparable to those of MOKD.


