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A. OPE Theory
Our proposed Orthogonal Position Encoding (OPE) is constructed using four basic functions

{cos(ux) cos(vy), cos(ux) sin(vy), sin(ux) cos(vy), sin(ux) sin(vy)}

where u and v are frequencies greater than or equal to zero. These functions represent the real form of the 2D-Fourier basis
for a periodic and continuous 2D signal. Representing real 2D signals with complex 2D-Fourier basis, we use the conjugate
symmetry to derive the real form basis. Our derivation extends the real form basis of 1D-Fourier transform [7, Chap. 3.3.1]
to the 2D case.

Suppose fXY (x, y) represents a periodic and continuous complex signal in 2D, where X and Y is the minimum positive
period for x- and y-axis, respectively. In our paper, we set X = Y = 2. Applying the Fourier and inverse Fourier transforms,
we have:

F (u, v) =
1

XY
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−X/2
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+∞∑
u=−∞

+∞∑
v=−∞

F (u, v)e2πi(ux/X+vy/Y ) (2)

where u, v ∈ Z. When fXY (x, y) ∈ R is a real signal, we have fXY (x, y) = fXY (x, y) and the following equation

fXY (x, y) =

+∞∑
u=−∞

+∞∑
v=−∞

F (u, v)e−2πi(ux/X+vy/Y ) (3)

Replacing u, v in Eq.(2) by −u and −v yields

fXY (x, y) =

+∞∑
u=−∞

+∞∑
v=−∞

F (−u,−v)e−2πi(ux/X+vy/Y ) (4)

Comparing Eq.(3) and Eq.(4), we have the conjugate symmetry

F (−u,−v) = F (u, v) (5)



Adding Eq.(2) and Eq.(3), we obtain

fXY (x, y) =
1

2

[
+∞∑

u=−∞

+∞∑
v=−∞

F (u, v)e2πi(ux/X+vy/Y ) +

+∞∑
u=−∞

+∞∑
v=−∞

F (u, v)e−2πi(ux/X+vy/Y )

]

=
1

2

+∞∑
u=−∞

+∞∑
v=−∞

[
F (u, v)e2πi(ux/X+vy/Y ) + F (u, v)e−2πi(ux/X+vy/Y )

]
=

+∞∑
u=−∞

+∞∑
v=−∞

Re
[
F (u, v)e2πi(ux/X+vy/Y )

]
. (6)

Let F (u, v) ≜ Au,v + iBu,v , where Au,v, Bu,v ∈ R are real numbers. Expanding Eq.(6) yields
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Therefore, we obtain the real basis for u, v ∈ Z.
For brevity we set u, v to be natural numbers ∈ N from now on and define
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Based on the conjugate symmetry in Eq.(5), we have

A−u,−v + iB−u,−v = Au,v − iBu,v, (9)

which implies

A−u,−v = Au,v

B−u,−v = −Bu,v (10)

Combining Eq.(7), Eq.(8) and Eq.(10), we can rewrite fXY (x, y) as

fXY (x, y) =

+∞∑
u=−∞

+∞∑
v=−∞

[Au,ve1 −Au,ve2 −Bu,ve3 −Bu,ve4]

=

+∞∑
u=1

+∞∑
v=1

2 (Au,ve1 −Au,ve2 −Bu,ve3 −Bu,ve4) + 2 (Au,−ve1 +Au,−ve2 −Bu,−ve3 +Bu,−ve4)

+

+∞∑
u=1

2 (Au,0e1 −Bu,0e3) +

+∞∑
v=1

2 (A0,ve1 −B0,ve4) +A0,0

=

+∞∑
u=1

+∞∑
v=1

[2 (Au,v +Au,−v) e1 − 2 (Au,v −Au,−v) e2 − 2 (Bu,v +Bu,−v) e3 − 2 (Bu,v −Bu,−v) e4]

+

+∞∑
u=1
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+∞∑
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2 (A0,ve1 −B0,ve4) +A0,0 (11)



Since A0,0, Au,0, A0,v , Au,v , Au,−v , B0,0, Bu,0, B0,v , Bu,v , and Bu,−v are real numbers and are independent to each
other when u, v ≥ 0 in Eq.(11), we can express fXY (x, y) as a linear combination of e1, e2, e3, and e4.

Notice when uv = 0, some basis in Eq.(8) would degenerate into one variable function or constant term, where Eq.(11)
has already distinguished them. For a simpler way to construct e1, e2, e3, e4, we could also multiply each item of every
variable’s 1D-Fourier real form basis.

B. Additional Results
B.1. DIV2K

For DIV2K validation set [1], we achieve competitive visual results against SOTA [5]. Notice for larger scale factor (×24
- ×30), there are ringing effects at the edges of the images (Fig. 1, Fig. 2, Fig. 4) in LIIF [3] and our method, while LTE’s [5]
are less obvious. This indicates even MLP is hard to restore high-frequency information [3] while using position encoding
to enhance it could mitigate this [5]. However, as an uninterpretable method, LTE still has some stains at the edges and
cannot obtain smooth edges (see ×30 scale factor). For our method, we can easily locate the problem at the selection of max
frequency of OPE. To achieve better results, larger max frequency of OPE and larger training scale factor is necessary, this
would be a promising future work.

B.2. Benchmark

For Benchmark datasets [2, 4, 6, 8], we persist competitive results against SOTA [5]. There are negligible difference
for most of the results (Fig. 5, Fig. 6, Fig. 7). For those images with complex texture, like Urban100 [4], we choose 3
representational images. For regular texture (Fig. 8), our method keeps neat edges, while LIIF [3] and LTE [5] suffers from
severe distortions (see ×8) and rough edge. For elongated texture (Fig. 9), we still keep minimum deformation and do not
lost it (see ×8) , while LTE, as a enhanced MLP with complex continuous image representation, is unstable to capture this
slight detail (see ×8). For those more complex texture with perspective relation and varying element size (Fig. 10), existing
arbitrary-scale SR methods do not obtain favorable results, this would be a challenging future work.

C. Flipping Consistency Verification
This section we will provide more samples for verifying flipping consistency. When the feature map is sent to the up-

sampling module, we perform four transformations. flip-0: do not flip; flip-1: flip horizontal; flip-2: flip vertical; flip-3:
flip horizontal and vertical. As shown in Fig. 11, Fig. 12, Fig. 13, for LIIF [3], the SR results of flip-1, flip-2 and flip-3
become blurred compared to flip-0, this is due to the INR-based upsampling module is lack of symmetry inductive bias while
it needs extra data augmentation to learn the symmetry in training. Notice the original SR results of flip-1, flip-2 and flip-3
are flipped following feature map’s pattern, we flip them back to align flip-0’s result for the convenience of comparison. As
for our method, we observe all the results are totally the same, this also can be explained that 2D Fourier bases are naturally
symmetrical.

D. More Training Details
For constructing LR-HR pairs in training, currently arbitrary-scale SR methods take similar procedure. A scale factor

r is uniformly sampled from [1, 4], then cropping HR patch (48 · r × 48 · r) from the training set and then generating
fixed-size (48 × 48) LR patch by bicubic. Then 2304 pixels are sampled randomly from HR and mapped into 2D domain
([−1, 1] × [−1, 1]) by position coords. Finally, the coords and LR are inputs while the HR pixels are ground truth. Notice
different r will cause different coordinate density to capture multi-scale information, hence to keep r be sampled uniformly
is essential.

In Sec. 3.3 and Sec. 4.1, we designed an interesting ”inverse operation” experiment and discussed the selection of max
frequency of OPE. However, we believe the experiment results’ potential are more than that. We find the delicate relationship
of max frequency and scale factor r, it may implicitly affect the effectiveness of training. For example, sampling r = 4
when constructing LR-HR pairs may be best for OPE frequency n = 3 as shown in Sec. 4.1, while smaller r could introduce
redundant information into the result, or in other words, it is redundancy for representing such a low target resolution with
such a high OPE frequency. However, keep scale factor r fixed to 4 is unreasonable since the coordinate density will be fixed
and could not capture multi-scale information. To balance the problems, we fix r = 4 and interpolate cropped HR patch with
bicubic to higher resolution before sampling pixels.
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Figure 1. Qualitative comparison with SOTA methods for arbitrary-scale SR. On div2k 0801.png. 1-st row: ground truth, input images
with different scale factor (larger scale factor to lower resolution).
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Figure 2. Qualitative comparison with SOTA methods for arbitrary-scale SR. On div2k 0866.png. 1-st row: ground truth, input images
with different scale factor (larger scale factor to lower resolution).
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Figure 3. Qualitative comparison with SOTA methods for arbitrary-scale SR. On div2k 0882.png. 1-st row: ground truth, input images
with different scale factor (larger scale factor to lower resolution).
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Figure 4. Qualitative comparison with SOTA methods for arbitrary-scale SR. On div2k 0896.png. 1-st row: ground truth, input images
with different scale factor (larger scale factor to lower resolution).
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Figure 5. Qualitative comparison with SOTA methods for arbitrary-scale SR. On b100 223061.png. 1-st row: ground truth, input images
with different scale factor (larger scale factor to lower resolution).
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Figure 6. Qualitative comparison with SOTA methods for arbitrary-scale SR. On set5 butterfly.png. 1-st row: ground truth, input images
with different scale factor (larger scale factor to lower resolution).
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Figure 7. Qualitative comparison with SOTA methods for arbitrary-scale SR. On set14 barbara.png. 1-st row: ground truth, input images
with different scale factor (larger scale factor to lower resolution).
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Figure 8. Qualitative comparison with SOTA methods for arbitrary-scale SR. On urban100 img004.png. 1-st row: ground truth, input
images with different scale factor (larger scale factor to lower resolution).
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Figure 9. Qualitative comparison with SOTA methods for arbitrary-scale SR. On urban100 img091.png. 1-st row: ground truth, input
images with different scale factor (larger scale factor to lower resolution).



Bicubic

LIIF [3]

LTE [5]

OPE (ours)

GT / Methods ×2 ×3 ×4 ×6 ×8

Figure 10. Qualitative comparison with SOTA methods for arbitrary-scale SR. On urban100 img041.png. 1-st row: ground truth, input
images with different scale factor (larger scale factor to lower resolution).
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Figure 11. Flipping consistency on div2k 0868.png. flip-0: do not flip; flip-1: flip horizontal; flip-2: flip vertical; flip-3: flip horizontal
and vertical.
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Figure 12. Flipping consistency on div2k 0884.png. flip-0: do not flip; flip-1: flip horizontal; flip-2: flip vertical; flip-3: flip horizontal
and vertical.
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Figure 13. Flipping consistency on div2k 0891.png. flip-0: do not flip; flip-1: flip horizontal; flip-2: flip vertical; flip-3: flip horizontal
and vertical.
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