
Appendices
A. Overview

The following sections are covered in this supplementary
material to support our main paper:

• Quantitative results of our method and the baselines;

• Real-world dataset collection;

• Comparison with prior image-blending works;

• Our model’s robustness against low-quality images;

• Additional qualitative examples;

• Implementation details.

B. Quantitative Results
As mentioned in the paper, to demonstrate the realism

and faithfulness of our model based on human perception,
we conduct a user study with a real-world dataset and col-
lect quantitative results.

To further support our conclusion, we prepared a syn-
thetic test dataset based on Pixabay Dataset which is gen-
erated in a similar way to how we prepared the training
dataset for our framework. The main difference is that we
apply larger spatial perturbations on the input object. More
specifically, the object is randomly rotated within the range
[−θ, θ] where θ = 40◦. We apply this change to better eval-
uate the model’s ability to correct large geometric inconsis-
tencies.

We test our model and two baseline methods (BLIP [4]
and SDEdit [5]) on 1500 images randomly chosen from the
synthetic test dataset. The baselines are trained on the same
pretrained diffusion model, synthetic dataset, and using the
same data augmentation method as ours. For SDEdit we
use a noise strength of 0.85, enabling it to apply larger spa-
tial transformations, which better adapts to the synthetic test
dataset. In Tab. 1, we use FID [2] as a measurement of fi-
delity, and LPIPS [12] to measure the feature distance be-
tween the generation and ground truth. We also employ
a modified CLIP score [1, 7] to measure semantic similar-
ity between the given and generated object. The column
Crop indicates whether we compare the performance with a
cropped square patch that covers the generated area. Focus-
ing on the cropped region, we can better evaluate the gen-
eration quality; using full image, we can assess the match-
ing performance between the generated area and the back-
ground. As shown in this table, our model achieves in all
cases the best performance in fidelity and preservation. De-
spite using a combination of metrics well suited to our task,
we observe there are still limitations in these evaluation

methods. For example, they cannot measure the correct-
ness of the geometric transformation applied to the object.
We leave the design of a better metric for generative object
compositing as future work.

C. Real-World Dataset Collection
Fig. 1 depicts the real dataset labeling process. The

bounding box annotations obtained by this tool are used
when generating the result images for our user study. We
show that this annotation process directly corresponds to
the real-world use case where the user edits a pair of images
(an object and a background image) for object compositing.
Using this interface, the user can first choose an object im-
age and a background image (displayed in the left panel and
the middle panel). Afterward, the user drags the object to
a target location on the background image. Then, the loca-
tion is determined and the object can also be scaled at will.
During the whole process, the right panel will display the
copy-and-paste image as a preview. Finally, we extract the
bounding box of the object to record the location and scale.

D. Comparison with Prior Image-Blending
Works

In addition to BLIP and SDEdit, we further compare
with several image blending methods: Deep Image Blend-
ing [11] (DIB), GP-GAN [10] and Poisson Blending [6]. To
obtain better composition results, we also use SGRNet [3]
to generate shadows for the blended objects.

Following the user study in the main paper, we con-
duct another user study on these prior works using our real
dataset, where we display side-by-side composition results
to users and ask them to choose the one that looks more re-
alistic. Tab. 2 shows the percentage of users choosing our
results when comparing to the baselines. This user study on
realism demonstrates that our model outperforms the image
blending-based baselines in the task of object composition.
We also provide a qualitative example in Fig. 2, where only
our model can synthesize a novel view, so the object is able
to match the geometry of the background.

E. Robustness against Low-quality Images
We mention in the paper that the traditional compositing

pipeline [8, 9] cannot address the problem of geometry har-
monization and view synthesis, which are advantages of our
generation-based method. Another advantage of our model
over the traditional pipeline is that it is robust against low-
quality input object images. In the real-world scenario of
object compositing, it is a common case that the quality of
the input object is not perfect. We categorize low-quality
input object images into four scenarios:

• the input object image is blurry due to lens blur;



Method Crop FID ↓ LPIPS ↓ CLIP text score ↑ CLIP image score ↑

BLIP ✗ 18.3673 0.0923 29.6719 95.5625
SDEdit ✗ 17.4963 0.0870 29.6563 96.1250
Ours ✗ 15.8191 0.0835 29.8594 97.0000

BLIP ✓ 28.0690 0.2463 29.0313 91.1250
SDEdit ✓ 27.0630 0.2312 29.0625 91.8750
Ours ✓ 24.4719 0.2223 29.4844 93.7500

Table 1. Quantitative comparison with baselines. We measure the performance of our model against two baselines (BLIP and SDEdit)
through FID, LPIPS, and modified CLIP scores. The results further demonstrate the effectiveness of our model in addition to the user study
results in the paper. More visual comparisons with baselines on the real dataset are shown in Figs. 5 and 6.

Figure 1. The user interface of the real-world data labeling tool. This figure demonstrates our data collection process closely simulates the
real-world use case in object compositing. The real dataset (including object-background pairs and bounding box annotations) collected
using this interface is used for our user study. It consists of three panels: 1) the user can select the object from the left panel; 2) the
middle panel shows the background image; 3) the right panel previews copy-and-paste results in real time. Users can drag the object to any
location in the background as well as alter the scale of the object.

Figure 2. Qualitative comparisons of our model and image
blending-based baselines. Shadow is generated by [3] to each
baseline. Our model generates the most realistic compositing re-
sult since it can predict a new view of the object and do geometry
correction.

• some parts of the input object are invisible such as
when the object is partially occluded;

• the segmentation model fails to extract an accurate seg-
mentation mask of the object, thus the object image

Method DIB+SGRNet GPGAN+SGRNet PB+SGRNet

Ours 82.93% 84.74% 76.91%

Table 2. A user study on realism. Similar to the user study in
the main paper, we further compare to three image-blending base-
lines: 1) Deep Image Blending [11] (DIB); 2) GP-GAN [10] and 3)
Poisson Blending [6] (PB); also applying SGRNet [3] for shadow
generation. This table shows the percentage of users choosing
our results in side-by-side comparisons. The high preference rates
demonstrate the advantage of our model over the baselines.

includes some background image content; and

• the object is too small and thus has low resolution.

In our self-supervised training scheme, the synthetic
training data we collected covers all the above situations
so that the content adaptor will not be constrained by the



Figure 3. Robustness. We show our model’s robustness against low-quality input objects in the real world. The figure includes three
examples. In each example, the top row shows the input object under different conditions: 1) blur, 2) partial occlusion, 3) inaccurate
segmentation, and 4) low resolution. The bottom row shows the compositing results corresponding to the input above. Compared to the
original input object, our model produces similar high-quality generation results under all conditions.



Figure 4. Robustness. We show our model’s robustness against low-quality input objects in the real world. The figure includes three
examples. In each example, the top row shows the input object under different conditions: 1) blur, 2) partial occlusion, 3) inaccurate
segmentation, and 4) low resolution. The bottom row shows the compositing results corresponding to the input above. Compared to the
original input object, our model produces similar high-quality generation results under all conditions.



Figure 5. Qualitative comparison with baseline methods on the real-world test dataset. Our model better preserves a similar appearance
to the reference object (the first column) while generating realistic content that is more consistent with the background.



Figure 6. Qualitative comparison with baseline methods on the real-world test dataset. Our model better preserves a similar appearance
to the reference object (the first column) while generating realistic content that is more consistent with the background.



flaws of the low-level features. In Figs. 3 and 4 we show
examples where low-quality input objects are provided to
simulate the aforementioned four scenarios. It is illustrated
in the figures that despite the flaws in the input objects, our
model is robust to such extreme cases and is still able to
generate realistic content.

F. Additional Qualitative Examples
In addition to the qualitative results in the paper, we show

more visual comparisons with baselines in Figs. 5 and 6.

G. Implementation Details
Content Adaptor. In the pretraining of the content adaptor,
we use a pretrained ViT-L/14 image encoder from [7]. This
image encoder has been trimmed and only 6 of its 12 atten-
tion blocks are kept. We apply this change to better preserve
the details of the input object. In the adaptor, we use one at-
tention layer with 8 heads. Its embedding dimension is 768.
Diffusion steps. We use t = 100 time steps when generat-
ing images for the user study and for all qualitative results;
t = 50 is used when testing our model and baselines on the
synthetic test data mentioned in Sec. B.
Baselines from the main paper. In the second baseline
from the main paper, we integrate both BLIP and SDEdit
to a stable diffusion model. When only using SDEdit, the
generated object will be limited to follow its original shape
and pose, so it is harder to match to the background ge-
ometry. Combining BLIP and SDEdit improves the perfor-
mance (e.g. view synthesis) since both high-level semantic
data and low-level texture features are included. To imple-
ment this, we use the semantic text embedding obtained by
BLIP (from the input image) as context in attention blocks,
and insert spatial guidance (the copy-and-paste image) dur-
ing the denoising stage.
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