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This supplementary material presents the following contents:
Sec. A provides additional experimental results.
Sec. B provides additional implementation details.

A. More Results
A.1. Comparisons with different methods

We use the proposed method with number of sampling patterns L = 16 and compare with different methods using different
asymmetric factors. As we observe in Tables A1 and A2, our proposed method achieves the best quantitative performance
across the different asymmetry factors.

Table A1. Comparisons with different methods with different resolution asymmetry factors.

Method
Resolution asymmetry factor s

2 6 8
EPE 3PE EPE 3PE EPE 3PE

SGM [5] 5.481 36.19 9.617 55.14 14.834 72.46
Restore [7] + SGM [5] 5.326 35.74 8.728 48.39 10.681 56.02
Baseline 2.194 10.81 3.278 23.56 3.856 34.95
Restore [7] + Baseline 2.144 10.53 3.071 20.51 3.710 28.79
DAUS [4] 2.074 9.47 2.657 16.16 2.953 18.44
Proposed Method 1.981 9.20 2.544 13.63 2.836 15.43

Table A2. Comparisons with different methods with different noise asymmetry factors.

Method
Noise asymmetry factor σ

0.05 0.10 0.20
EPE 3PE EPE 3PE EPE 3PE

SGM [5] 5.204 36.92 9.254 57.64 17.294 75.13
Restore [7] + SGM [5] 5.183 35.13 8.814 53.16 13.164 71.08
Baseline 2.124 11.04 2.571 14.96 6.238 35.82
Restore [7] + Baseline 1.978 10.51 2.284 12.63 4.121 27.14
DAUS [4] 1.984 10.90 2.196 11.89 3.580 21.84
Proposed Method 1.942 10.52 2.138 11.46 3.334 20.18
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We present qualitative results in Figs. A1 and A2, for resolution and noise asymmetries, respectively. Compared to the
different methods, the proposed method generates better results with less artifacts.

(a) s = 2 (b) s = 6 (c) s = 8

Figure A1. Qualitative results of the different stereo matching methods under re solution asymmetry with factors (a) s = 2, (b) s = 6, and
(c) s = 8. (from top to bottom) right image, stereo matching results of: SGM [5], DAUS [4], and the proposed method.

(a) σ = 0.05 (b) σ = 0.10 (c) σ = 0.20

Figure A2. Qualitative results of the different stereo matching methods under noise asymmetry with factors (a) σ = 0.05, (b) σ = 0.10,
and (c) σ = 0.20. (from top to bottom) right image, stereo matching results of: SGM [5], DAUS [4], and the proposed method.



A.2. Asymmetries with different type of resolution and noise degradation

In addition to the bilinear blur and Gaussian noise for generating the resolution- and noise-asymmetry images, we con-
ducted experiments using Gaussian blur and Poisson noise. We use Gaussian blur with standard deviation [1, 2, 3, 4], and
Poisson noise with Peak parameters [0.03, 0.05, 0.07, 0.09], respectively. The quantitative results are presented in Table. A3.
Similar to the results in the main paper, we observe that the proposed method consistently outperforms the different methods
in asymmetric stereo matching with different types of resolution and noise degradation.

Table A3. Comparisons of different methods under asymmetries with Gaussian blur and Poisson noise.

Method
Gaussian blur factor

1 2 3 4
EPE 3PE EPE 3PE EPE 3PE EPE 3PE

SGM [5] 5.231 36.21 5.758 31.44 8.422 52.47 16.173 73.26
Restore [7] + SGM [5] 5.210 35.98 5.677 29.61 7.170 43.26 12.939 66.90
Baseline 2.034 9.44 2.630 16.17 2.838 16.26 3.524 22.04
Restore [7] + Baseline 1.969 9.20 2.590 15.04 2.701 15.21 3.178 18.92
DAUS [4] 1.984 9.24 2.273 12.08 2.561 14.76 2.906 16.83
Proposed Method 1.905 9.11 2.169 11.51 2.382 13.29 2.766 15.42

Method
Poisson noise Peak parameter

0.03 0.05 0.07 0.09
EPE 3PE EPE 3PE EPE 3PE EPE 3PE

SGM [5] 11.432 64.63 15.755 72.43 16.640 74.08 18.164 78.98
Restore [7] + SGM [5] 8.262 48.19 11.809 64.21 13.475 68.17 14.014 70.46
Baseline 3.541 21.92 5.744 30.29 5.939 35.29 6.574 38.71
Restore [7] + Baseline 2.920 19.26 3.966 26.83 4.074 25.84 4.731 32.61
DAUS [4] 2.844 16.41 3.610 22.57 3.811 24.16 4.178 29.04
Proposed Method 2.676 14.88 3.394 18.64 3.632 23.20 3.907 25.42



A.3. Pattern visualization

We visualize the sampling patterns of FCSS [6] and the proposed SASS. The networks are trained under resolution
asymmetry with s = 4, and we use L = 8 for clear visibility of the patterns. The visualization is performed on the image for
better understandings, where the self-similarity calculation is applied to the raw feature. We indicate the center pixel x0 with
red circle, and the sampling patterns with squares. Each pattern index l ∈ [1, 2, ..., L] is indicated with different color.

The visualization is presented in Fig A3. As addressed in the paper, FCSS [6], once trained, generates all the same
sampling patterns across different images and regions. In contrast, the proposed SASS adaptively generates the patterns to
extract robust features by encoding the structural layouts.

Figure A3. Visualization of the sampling patterns of FCSS [6] (1st row) and our proposed SASS (2nd row). FCSS [6] generates same
sampling patterns for all image regions, whereas the proposed SASS generates different patterns for each pixel.

B. Implementation Details
B.1. Architecture details

The original ‘stacked hourglass’ architecture of PSMNet [3] contains series of hourglass architecture to estimate the
disparities in a cascaded architecture. We reduce the architecture to output a single disparity estimation, and scaled the output
with respect to the image width in order to match the input range of bilinear sampling operation. In addition, the overall
capacity of the network is reduced by adjusting the number of convolutional layers and channels. We compose the offset
generator with three convolutional blocks, where each block consists of convolution and batch normalization layers. ReLU
activation is also applied after the batch normalization layer, except for the last block.

Before calculating the SASS feature using (4), the raw feature F is normalized with L2 normalization towards the channel
axis. The maximum operation maxẋ∈Nx is realized with a max pooling layer with 2× 2 window. The process also is applied
when calculating FCSS [6] feature.

B.2. Determining hyper-parameters

In order to determine the loss weights in (10), we first fixed λpm = 1.0, λds = 0.5, then conducted grid search for λfm

and λcs. The followed the practice in [6] and [4] to set the exponential bandwidth γ = 0.5 (4) and αpm = αfm = 0.15 (7),
(8). We set τ = 3, considering the trade-off between correctness of the estimated disparities and ratio between positive and
negative pixels.

In order to determine the margin hyper-parameter M in (6), we observe average L2 distance between the normalized raw
feature values extracted from the aligned high- and low-quality images. To this end, we simulate the degradation to the
left image, and extract the features from the original and degraded images using the encoder in a trained stereo network.
Observing average of approximately 0.3 in L2 distance, we perform grid search in range [0.1, 0.7], and finally set M = 0.5.



B.3. Comparison methods

The image restoration method [7]1 provides the pre-trained models for denoising and super-resolution, trained with real-
world datasets without artificial degradation [1, 2]. The pre-trained denoising model is trained with unspecified noise level,
and the super-resolution model is trained with 4× setting. For the results in the supplementary material (Tables. A1, A2),
we use the pre-trained model for all noise asymmetry settings, and re-trained the model for super-resolution using artificial
degradation using the corresponding low-resolution degradation. We used the default settings of the released source code ex-
cept the batch size, which is reduced to 4. We used a python implementation of SGM [5]2, which uses Census transformation
as image feature extraction.
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