Unsupervised Deep Asymmetric Stereo Matching with
Spatially-Adaptive Self-Similarity
Supplementary Material

Taeyong Song' Sunok Kim? Kwanghoon Sohn®*
'Hyundai Motor Company R&D Division, 2Korea Aerospace University,
3Yonsei University, Korea Institute of Science and Technology (KIST)

taeyongsong@hyundai.com, sunok.kim@kau.ac.kr, khsohn@yonsei.ac.kr

This supplementary material presents the following contents:
Sec. A provides additional experimental results.
Sec. B provides additional implementation details.

A. More Results
A.1. Comparisons with different methods

We use the proposed method with number of sampling patterns L = 16 and compare with different methods using different
asymmetric factors. As we observe in Tables Al and A2, our proposed method achieves the best quantitative performance
across the different asymmetry factors.

Table Al. Comparisons with different methods with different resolution asymmetry factors.

Resolution asymmetry factor s

Method 2 6 8

EPE \ 3PE EPE \ 3PE EPE \ 3PE
SGM [5] 5481 36.19 | 9.617 55.14 | 14.834 72.46
Restore [7] + SGM [5] | 5.326 35.74 | 8.728 48.39 | 10.681 56.02
Baseline 2.194 10.81 | 3.278 23.56 | 3.856 3495
Restore [7] + Baseline | 2.144 10.53 | 3.071 20.51 | 3.710 28.79
DAUS [4] 2.074 947 | 2,657 16.16 | 2953 18.44
Proposed Method 1.981 9.20 | 2.544 13.63 | 2.836 1543

Table A2. Comparisons with different methods with different noise asymmetry factors.

Noise asymmetry factor o

Method 0.05 0.10 0.20

EPE | 3PE | EPE | 3PE | EPE | 3PE
SGM [5] 5204 3692 [ 9254 57.64 | 17.294 75.13
Restore [7] + SGM [5] | 5.183  35.13 | 8.814 53.16 | 13.164 71.08
Baseline 2124 11.04 [ 2571 1496 | 6238 3582
Restore [/] + Baseline | 1.978 1051 | 2.284 12.63 | 4.121 27.14
DAUS [] 1.984 1090 | 2.196 11.89 | 3580 21.84
Proposed Method 1942 1052 | 2138 1146 | 3334 2018




We present qualitative results in Figs. Al and A2, for resolution and noise asymmetries, respectively. Compared to the
different methods, the proposed method generates better results with less artifacts.

(a)s =2 b)s=6 (c)s=8
Figure Al. Qualitative results of the different stereo matching methods under re solution asymmetry with factors (a) s = 2, (b) s = 6, and
(c) s = 8. (from top to bottom) right image, stereo matching results of: SGM [5], DAUS [4], and the proposed method.
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Figure A2. Qualitative results of the different stereo matching methods under noise asymmetry with factors (a) o = 0.05, (b) o = 0.10,
and (c) o = 0.20. (from top to bottom) right image, stereo matching results of: SGM [5], DAUS [4], and the proposed method.
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A.2. Asymmetries with different type of resolution and noise degradation

In addition to the bilinear blur and Gaussian noise for generating the resolution- and noise-asymmetry images, we con-
ducted experiments using Gaussian blur and Poisson noise. We use Gaussian blur with standard deviation [1, 2, 3, 4], and
Poisson noise with Peak parameters [0.03, 0.05,0.07, 0.09], respectively. The quantitative results are presented in Table. A3.
Similar to the results in the main paper, we observe that the proposed method consistently outperforms the different methods
in asymmetric stereo matching with different types of resolution and noise degradation.

Table A3. Comparisons of different methods under asymmetries with Gaussian blur and Poisson noise.

Gaussian blur factor
Method 1 2 3 4
EPE \ 3PE EPE \ 3PE EPE \ 3PE EPE \ 3PE
SGM [5] 5231 36.21 | 5758 31.44 | 8422 5247 | 16.173 73.26
Restore [7] + SGM [5] | 5.210 3598 | 5.677 29.61 | 7.170 43.26 | 12.939 66.90
Baseline 2.034 944 | 2630 16.17 | 2.838 16.26 | 3.524 22.04
Restore [7] + Baseline | 1.969 920 | 2.590 15.04 | 2.701 1521 | 3.178 18.92
DAUS [4] 1.984 924 | 2273 12.08 | 2.561 14.76 | 2906 16.83
Proposed Method 1905 9.11 | 2.169 11.51 | 2382 13.29 | 2.766 15.42
Poisson noise Peak parameter
Method 0.03 0.05 0.07 0.09
EPE \ 3PE EPE \ 3PE EPE \ 3PE EPE \ 3PE
SGM [5] 11432 64.63 | 15.755 7243 | 16.640 74.08 | 18.164 78.98
Restore [7] + SGM [5] | 8.262 48.19 | 11.809 64.21 | 13475 68.17 | 14.014 70.46
Baseline 3541 2192 | 5744 30.29 | 5939 3529 | 6.574 38.71
Restore [7] + Baseline | 2.920 19.26 | 3.966 26.83 | 4.074 2584 | 4.731 32.61
DAUS [4] 2.844 1641 | 3.610 22.57 | 3811 24.16 | 4.178 29.04
Proposed Method 2.676 14.88 | 3.394 18.64 | 3.632 23.20 | 3.907 2542




A.3. Pattern visualization

We visualize the sampling patterns of FCSS [6] and the proposed SASS. The networks are trained under resolution
asymmetry with s = 4, and we use L = 8 for clear visibility of the patterns. The visualization is performed on the image for
better understandings, where the self-similarity calculation is applied to the raw feature. We indicate the center pixel xg with
red circle, and the sampling patterns with squares. Each pattern index [ € [1,2, ..., L] is indicated with different color.

The visualization is presented in Fig A3. As addressed in the paper, FCSS [6], once trained, generates all the same
sampling patterns across different images and regions. In contrast, the proposed SASS adaptively generates the patterns to
extract robust features by encoding the structural layouts.
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Figure A3. Visualization of the sampling patterns of FCSS [6] (1st row) and our proposed SASS (2nd row). FCSS [6] generates same
sampling patterns for all image regions, whereas the proposed SASS generates different patterns for each pixel.

B. Implementation Details
B.1. Architecture details

The original ‘stacked hourglass’ architecture of PSMNet [3] contains series of hourglass architecture to estimate the
disparities in a cascaded architecture. We reduce the architecture to output a single disparity estimation, and scaled the output
with respect to the image width in order to match the input range of bilinear sampling operation. In addition, the overall
capacity of the network is reduced by adjusting the number of convolutional layers and channels. We compose the offset
generator with three convolutional blocks, where each block consists of convolution and batch normalization layers. ReLU
activation is also applied after the batch normalization layer, except for the last block.

Before calculating the SASS feature using (4), the raw feature F' is normalized with Ly normalization towards the channel
axis. The maximum operation maxxe v, is realized with a max pooling layer with 2 x 2 window. The process also is applied
when calculating FCSS [6] feature.

B.2. Determining hyper-parameters

In order to determine the loss weights in (10), we first fixed Ap,, = 1.0, \gs = 0.5, then conducted grid search for Ay,
and A.,. The followed the practice in [6] and [4] to set the exponential bandwidth v = 0.5 (4) and app, = oy, = 0.15 (7),
(8). We set 7 = 3, considering the trade-off between correctness of the estimated disparities and ratio between positive and
negative pixels.

In order to determine the margin hyper-parameter M in (6), we observe average Lo distance between the normalized raw
feature values extracted from the aligned high- and low-quality images. To this end, we simulate the degradation to the
left image, and extract the features from the original and degraded images using the encoder in a trained stereo network.
Observing average of approximately 0.3 in Lo distance, we perform grid search in range [0.1, 0.7], and finally set M = 0.5.



B.3. Comparison methods

The image restoration method [7]' provides the pre-trained models for denoising and super-resolution, trained with real-

world datasets without artificial degradation [[,2]. The pre-trained denoising model is trained with unspecified noise level,
and the super-resolution model is trained with 4x setting. For the results in the supplementary material (Tables. Al, A2),
we use the pre-trained model for all noise asymmetry settings, and re-trained the model for super-resolution using artificial
degradation using the corresponding low-resolution degradation. We used the default settings of the released source code ex-
cept the batch size, which is reduced to 4. We used a python implementation of SGM [5]?, which uses Census transformation

as

image feature extraction.
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