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Figure 1. Distribution of SNR values from the POS [7] algorithm
over the three main rPPG datasets and CelebV [8]. Although the
downloaded videos are of the highest quality available, there is a
clear downwards shift in signal quality due to compression and
diverse settings.

1. rPPG Signal Quality on CelebV-HQ

Given the enormous quantity of video data present in
CelebV-HQ, we were surprised to find that SINC was un-
able to correctly learn the pulse signal. To better understand
why training on CelebV-HQ is challenging, we predicted
rPPG signals with the POS [7] algorithm, which is a rep-
utable baseline approach that tends to transfer well across
different sources of video data. We calculated the signal-
to-noise ratio (SNR) from all of the predictions and com-
pared them with predictions on traditional rPPG datasets
(DDPM [4, 6], UBFC [1], and PURE [5]). Figure 2 shows
the histograms of SNRs for each dataset. The SNR for
CelebV-HQ is much lower than the other datasets, indicat-
ing a lower signal quality. The drop in quality is likely due
to video compression, which may have even occurred mul-
tiple times before download.

2. Justification for Frequency Bounds

To justify our selection of the lower and upper bounds of
40 bpm and 180 bpm, we plotted the distribution of ground
truth pulse rates over DDPM, UBFC, and PURE. In gen-
eral we see that very few pulse rates approach 40, and the
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Figure 2. Distribution of ground truth pulse rates over the three
main rPPG datasets explored in this paper.

highest pulse rates are just beyond 160 bpm.

3. Allowing Second Harmonic in Sparsity Loss

Many rPPG papers allow signal power in the second har-
monic when evaluating their approaches [2, 3]. We chose
not to incorporate higher harmonics to keep the sparsity loss
simple and avoid the risk of amplifying the dicrotic notch of
the waveform. We verified this empirically by training and
testing models on PURE while allowing energy in the sec-
ond harmonic. The performance dropped due to the peak
frequency occasionally occurring in the second harmonic
(MAE of 3.29 4 1.69). For the purpose of pulse rate esti-
mation, including the dicrotic notch can actually introduce
inaccuracies.

4. Impact of Batch Size

The variance component of the loss depends on the batch
size, since a normalized sum over the batch is calculated.
To verify that the batch size can safely be reduced for
memory-constrained environments we performed an abla-
tion study with batch sizes in {5, 10, 15, 20} when train-
ing on the PURE dataset. For within-dataset testing, mod-
els gave MAEs of {0.73 £ 0.08, 0.65 £ 0.09, 1.75 £ 1.39,
0.61 4 0.06}, respectively. Overall, the batch size does not
seem to have a large influence on performance.



5. Augmentations are Critical

Several augmentations are used while training SiNC,

some of which can even influence the underlying pulse rate
distributions (see frequency augmentations in Sec. 3.2). To
verify that the augmentations play a key role, we trained
models without them on PURE. Models trained without
augmentations gave a MAE of 33.86 4+ 0.83. Therefore,
training with augmentations is critical within the SiNC ap-
proach for models to converge to the blood volume pulse.
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