
Supplementary Material for Unicode Analogies: An Anti-Objectivist Visual
Reasoning Challenge

Steven Spratley Kris Ehinger Tim Miller
School of Computing and Information Systems, The University of Melbourne

https://github.com/SvenShade/UnicodeAnalogies

1. Unicode blocks and fonts used

Our software generates PMPs from an annotated pool
of Unicode characters. To select this pool, we looked at
blocks/sections in Unicode that contained characters we ex-
pected to be amenable to the assembly of novel problems.
That is, blocks depicting characters that are symbolic, ge-
ometric, not overly complex, and able to express multi-
ple concepts from our schema. We include the full lists
of blocks and the fonts used to render them in Tab. 1 and
Tab. 2. We also include licensing details and websites for
all fonts in Tab. 3.

2. Sample problems

To further aid researchers in exploring the dataset and
its current conceptual schema, in this document we provide
just under a hundred PMPs, each with a description of the
depicted rule and concept, and the correct answer frame.
Answers are numbered from 1 to 4, starting top left and
continuing left to right, top to bottom. All PMPs shown here
are generated without context shift, to more easily commu-
nicate the base rule. As discussed in the main paper, these
problems are generated with a similar philosophy to Bon-
gard problems, where ideally the most elegant solution will
be the intended one.

Like Bongard, we wish to point out the polysemy of
characters used to assemble our problems. Take the prob-
lem shown in Fig. 5, for example. Without context, the sec-
ond frame of the top row could depict two black objects.
Within this problem, and to most humans, it is perceived
as a square due to gestalt closure. In this dataset, it is also
used in problems that play with low and high ink level, in
problems that involve triangles, in problems that explore
diagonally-arranged objects, the number of solid compo-
nents, an equal aspect ratio, a centred mass, two base con-
tacts, flat base contacts... and the list goes on. Settling on
a perceptual take is therefore a question of context and of
usefulness, and not of assigning an objective label.

3. Ethics approvals

In keeping with expectations for ethical human research,
all facets of our human baseline experiment, including de-
sign, methodology, and plain language statement and con-
sent forms, were approved by the relevant research ethics
board (to be disclosed after blind review). Our dataset con-
tains no personally identifiable information, with partici-
pant IDs being used for the sole purpose of ensuring a single
set of fifteen solved problems per participant, before being
deleted.

4. Defining custom schemas

Unicode Analogies is intended to be a framework that fa-
cilitates the use of PMPs in research across multiple fields.
As such, there is the opportunity for researchers to define
their own schemas and generate new problems. Encoding
a designed schema is straight-forward, and involves typ-
ing out a classes dictionary consisting of concept keys
and applicable rule values, in Python script. The software
loads this dictionary and, given parameters to define the
split (e.g. sampling diversity), will begin generating prob-
lems by loading images directly from their annotation fold-
ers on disk. This also makes the annotation process simple,
as it requires no additional software or metadata; images
need to either be generated and saved to individual fold-
ers (or placed there during manual annotation, as was the
case with the Unicode characters used in this paper), and
the software will load them and begin assembly.

5. Further details on training

To promote reproducibility, all data and code, along
with scripts to automate all experiments, is released on our
project repository. In addition to this resource, we wish
to mention further details regarding the training process.
MRNet was trained with both cross-entropy and multi-head
losses. Blind, ResNet, RelBase, and MRNet models were
all trained with dropout on both spatial and fully-connected
layers, set to 0.1 and 0.5 respectively. For pragmatic rea-

1



sons, SCL models were trained using a higher batch size,
permitted by relatively fewer trainable parameters. We lim-
ited training MRNet to 20 epochs due to overfitting; we
expect this is due to it possessing an order of magnitude
more trainable parameters than other models. In Tab. 4, we
tabulate further information. The average times per epoch
are reported on a system using PyTorch’s DataParallel
feature to train models across twin NVIDIA 2080Ti GPUs.

All dataset splits, with the exception of the split used for
establishing a human baseline (and subsequent Challenge
split), possess a train-validation-test ratio of 70-3-27. This
can be easily changed in software to facilitate different ex-
periments. Note that this split ratio simultaneously defines
both the ratio of characters used to form problems in each
partition, as well as the ratio of problems formed. In Extrap-
olation / Extrapolation-plus splits, it also defines the ratio of
held-out problem tuples / class types.

The number of problems available to each split is highly
dependent on the split parameters used. If there are weak re-
strictions governing character hold-out and sampling diver-
sity (for instance, if no hold-out is requested, or if the sys-
tem is permitted to re-instantiate a problem tuple with the
same answer), then the full number of problems requested
(default = 10000) will likely be generated. Given that char-
acter hold-out and sampling diversity are key design con-
siderations and both greatly contribute to this dataset’s chal-
lenging nature, some splits will not make up the full 10000
problems. While most splits remained between 8000-10000
as reported in the main paper, the Union split is only able
to generate on average, 2300 problems per fold. This is
due to answers to union problems being more scarce (they
need to depict the right intersection of concepts), as well
as there being a limited number of concepts in the schema
applicable to union problems. The training partitions of all
dataset splits contain both context-shifted and non-shifted
problems, regardless of whether validation and testing is re-
quested to contain shifted problems, as this enables the gen-
eration of far more problems (and assumedly, training more
capable models) given limited annotations.



Unicode block Name Rendering font
16A0|16FF Runic Alphabetum
10C80|10CFF Old Hungarian ”
11000|1107F Brahmi ”
10100|1013F Aegean Numbers ”
10300|1032F Old Italic ”
103A0|103DF Old Persian ”
10800|1083F Cypriot Syllabary ”
12400|1247F Cuneiform Numbers and Punctuation ”
A6A0|A6FF Bamum Google Noto Bamum
16800|16A3F Bamum Supplement ”
A000|A48F Yi Syllables Google Noto Yi
A490|A4CF Yi Radicals ”
2D30|2D7F Tifinagh Google Noto Tifinagh
10600|1077F Linear A CTAN Linear A
1E800|1E8DF Mende Kikakui Mende Kikakui
1BC00|1BC9F Duployan Duployan
16F00|16F9F Miao Miao Unicode
1D800|1DAAF Sutton SignWriting Sutton SignWriting
10380|1039F Ugaritic Quivira
680|169F Ogham ”
1400|167F Unified Canadian Aboriginal Syllabics ”
18B0|18FF Unified Canadian Aboriginal Syllabics Extended ”
A700|A71F Modifier Tone Letters ”
0000|007F Basic Latin Symbola 10.24
0080|00FF Latin-1 Supplement ”
0100|017F Latin Extended-A ”
0180|024F Latin Extended-B ”
0250|02AF IPA Extensions ”
02B0|02FF Spacing Modifier Letters ”
0300|036F Combining Diacritical Marks ”
0370|03FF Greek and Coptic ”
0400|04FF Cyrillic ”
0500|052F Cyrillic Supplement ”
2000|206F General Punctuation ”
2070|209F Superscripts and Subscripts ”
20A0|20CF Currency Symbols ”
20D0|20FF Combining Diacritical Marks for Symbols ”
2100|214F Letterlike Symbols ”

Table 1. Unicode blocks used, with the fonts used to render them.



Unicode block (continued) Name Rendering font
2150|218F Number Forms Symbola 10.24
2190|21FF Arrows ”
2200|22FF Mathematical Operators ”
2300|23FF Miscellaneous Technical ”
2460|24FF Enclosed Alphanumerics ”
2500|257F Box Drawing ”
2580|259F Block Elements ”
25A0|25FF Geometric Shapes ”
2600|26FF Miscellaneous Symbols ”
2700|27BF Dingbats ”
27F0|27FF Supplemental Arrows-A ”
1D000|1D0FF Byzantine Musical Symbols ”
1D100|1D1FF Musical Symbols ”
1D00|1D7F Phonetic Extensions ”
2440|245F Optical Character Recognition ”
27C0|27EF Miscellaneous Mathematical Symbols-A ”
2800|28FF Braille Patterns ”
2900|297F Supplemental Arrows-B ”
2980|29FF Miscellaneous Mathematical Symbols-B ”
2A00|2AFF Supplemental Mathematical Operators ”
2B00|2BFF Miscellaneous Symbols and Arrows ”
2E00|2E7F Supplemental Punctuation ”
4DC0|4DFF Yijing Hexagram Symbols ”
FE20|FE2F Combining Half Marks ”
1D200|1D24F Ancient Greek Musical Notation ”
1D300|1D35F Tai Xuan Jing Symbols ”
1D360|1D37F Counting Rod Numerals ”
1D400|1D7FF Mathematical Alphanumeric Symbols ”
1F100|1F1FF Enclosed Alphanumeric Supplement ”
1F300|1F5FF Miscellaneous Symbols and Pictographs ”
1F700|1F77F Alchemical Symbols ”
1F780|1F7FF Geometric Shapes Extended ”
1F030|1F09F Domino Tiles ”
1D2E0|1D2FF Mayan Numerals Babelstone Han
3000|303FCJK Symbols and Punctuation ”
FE30|FE4FCJK Compatibility Forms ”
1FB00|1FBFF Symbols for Legacy Computing Legacy Computing Font

Table 2. Unicode blocks used, with the fonts used to render them (continued).



Rendering font Licence Website
Alphabetum Paid publishing licence http://guindo.pntic.mec.es/ jmag0042/alphaeng.html
Google Noto Bamum OFL 1.1 https://fonts.google.com/
Google Noto Yi ” ”
Google Noto Tifinagh ” ”
CTAN Linear A The LATEX Project Public Licence https://ctan.org/pkg/lineara
Mende Kikakui OFL 1.1 https://athinkra.github.io/mende-kikakui/
Duployan ” https://github.com/dscorbett/duployan-font
Miao Unicode ” https://github.com/phjamr/MiaoUnicode
Sutton SignWriting ” https://slevinski.github.io/SuttonSignWriting/
Quivira Public domain / unrestricted http://www.quivira-font.com/
Symbola 10.24 Freeware (≤ Symbola 10.24) https://packages.fedoraproject.org/pkgs/gdouros-symbola-fonts
Babelstone Han OFL 1.1 https://www.babelstone.co.uk/Fonts/Han.html
Legacy Computing Font ” https://github.com/dokutan/legacy computing-font/

Table 3. Fonts used, with their licences and website details.

Model architecture Learning rate Batch size Max. epochs Avg. time per epoch (s)
Context-blind 3e-4 32 60 2.45
ResNet 3e-4 32 60 3.73
RelBase 3e-4 32 60 9.97
MRNet 1e-3 32 20 19.15
SCL 1e-3 128 60 3.64

Table 4. Further information on hyperparameters used in training models.



Problem 1. Constant aspect ratio (wide). Answer=2.

Problem 2. Constant number of base contacts (two). Answer=3.

Problem 3. Constant base style (curved base). Answer=2.

Problem 4. Constant closed fill (full). Answer=3



Problem 5. Constant closure pattern (square). Answer=1.

Problem 6. Constant number of internal solid components (two). Answer=2.

Problem 7. Constant number of total solid components (one). Answer=4.

Problem 8. Constant number of internal spaces (one). Answer=1.



Problem 9. Constant number of unique solid components (two). Answer=4.

Problem 10. Constant in exhibiting concentric shapes. Answer=1.

Problem 11. Constant in exhibiting connected items facing different directions. Answer=3.

Problem 12. Constant number of connected items (two). Answer=1.



Problem 13. Constant number within groups (two). Answer=3.

Problem 14. Constant elongation (high). Answer=1.

Problem 15. Constant gestalt number (three). Answer=2.

Problem 16. Constant global mass centroid (South-West). Answer=3.



Problem 17. Constant global size (large). Answer=1.

Problem 18. Constant in exhibiting “balanced” groups (same object and with symmetry). Answer=2.

Problem 19. Constant horns. Answer=2.

Problem 20. Constant ink level (low). Answer=1.



Problem 21. Constant interaction (overlap). Answer=2.

Problem 22. Constant in exhibiting a type of intersection (orthogonal). Answer=4.

Problem 23. Constant in exhibiting an intersection with a number of emanating lines (two). Answer=4.

Problem 24. Constant in exhibiting an intersection with a minimum number of lines (two). Answer=1.



Problem 25. Constant number of intersections (one). Answer=4.

Problem 26. Constant in character style (bold). Answer=3.

Problem 27. Constant Latin character (uppercase-D). Answer=3.

Problem 28. Constant in exhibiting negative space. Answer=2.



Problem 29. Constant in exhibiting an odd-one-out scenario. Answer=4.

Problem 30. Constant width of opening (narrow). Answer=3.

Problem 31. Constant in exhibiting a type of relational position (diagonal). Answer=1.

Problem 32. Constant in exhibiting a type of relational rotation (parallel). Answer=3.



Problem 33. Constant in relational size (equal). Answer=1.

Problem 34. Constant in number of shape sides (one). Answer=1.

Problem 35. Constant in shape type (triangle). Answer=2.

Problem 36. Constant number of arrows (one). Answer=3.



Problem 37. Constant number of dashes (three). Answer=4.

Problem 38. Constant number of dots (four). Answer=4.

Problem 39. Constant in exhibiting a particular stroke feature (“wiggle”). Answer=1.

Problem 40. Constant number of curved line strokes (three). Answer=2.



Problem 41. Distribute three base style (curved, point, flat). Answer=1.

Problem 42. Distribute three in closed fill style (full, empty, half-shaded). Answer=3.

Problem 43. Distribute three closure shapes (line, circle, square). Answer=4.

Problem 44. Distribute three character style (dashed, thin, empty-bold). Answer=2.



Problem 45. Distribute three Latin characters (D, F, H). Answer=4.

Problem 46. Distribute three relational positions (centre, horizontal, diagonal). Answer=3.

Problem 47. Distribute three kinds of relational rotation (parallel, towards, converging). Answer=2.

Problem 48. Distribute three line stroke features (wiggle, spiral, loop). Answer=3.



Problem 49. Distribute three line rendering styles (thin, dashed, bold). Answer=4.

Problem 50. Progression in aspect ratio (tall, square, wide). Answer=4.

Problem 51. Progression in number of base contacts (3, 2, 1). Answer=3.

Problem 52. Progression in number of internal solid components (1, 2, 3). Answer=1.



Problem 53. Progression in number of total solid components (2, 3, 4). Answer=4.

Problem 54. Progression in number of internal spaces (7, 6, 5). Answer=4.

Problem 55. Progression in number of unique solid components (3, 2, 1). Answer=3.

Problem 56. Progression in number of connected components (4, 3, 2). Answer=4.



Problem 57. Progression in number of disconnected components (3, 4, 5). Answer=2.

Problem 58. Progression / movement in global mass centroid (South-West, Centre, North-East). Answer=2.

Problem 59. Progression in interaction type (none, touching, overlap). Answer=1.

Problem 60. Progression in angle of a contained intersection (acute, orthogonal, obtuse). Answer=2.



Problem 61. Progression in number of emanating lines from a contained intersection (3, 4, 5). Answer=4.

Problem 62. Progression in number of intersections (1, 2, 3). Answer=4.

Problem 63. Progression in number of shape sides (1, 3, 5). Answer=1.

Problem 64. Progression in number of arrows (1, 2, 3). Answer=4.



Problem 65. Progression in number of dashes (1, 2, 3). Answer=3.

Problem 66. Progression in number of dots (5, 3, 1). Answer=3.

Problem 67. Progression in number of curved strokes (3, 2, 1). Answer=2.

Problem 68. Progression in number of loops (3, 2, 1). Answer=3.



Problem 69. Progression in number of straight lines (3, 2, 1). Answer=3.

Problem 70. Progression in number of “wiggly” lines (1, 2, 3). Answer=2.

Problem 71. Progression in symmetry angle (horizontal, diagonal, vertical). Answer=1.

Problem 72. Progression in degree of rotational symmetry (2, 3, 4). Answer=4.



Problem 73. Arithmetic in the number of internal solid components (2 + 1 = 3). Answer=2.

Problem 74. Arithmetic in the number of total solid components (5 - 2 = 3). Answer=4.

Problem 75. Arithmetic in the number of internal spaces (5 - 4 = 1). Answer=3.

Problem 76. Arithmetic in the number of connected elements (3 + 1 = 4). Answer=2.



Problem 77. Arithmetic in the number of emanating lines in intersections (4 + 4 = 8). Answer=4.

Problem 78. Arithmetic in the number of intersections (3 - 1 = 2). Answer=3.

Problem 79. Arithmetic in the number of shape sides (1 + 5 = 6). Answer=2.

Problem 80. Arithmetic in the number of dashes (1 + 3 = 4). Answer=4.



Problem 81. Arithmetic in the number of dots (1 + 3 = 4). Answer=2.

Problem 82. Arithmetic in the number of loops (1 + 1 = 2). Answer=3.

Problem 83. Arithmetic in the number of straight lines (1 + 3 = 4). Answer=3.

Problem 84. Arithmetic in the number of zig-zag lines (2 - 1 = 1). Answer=4.



Problem 85. Arithmetic in the degree of rotational symmetry (8 - 6 = 2). Answer=4.

Problem 86. Union in gestalt number (3, then 6, then both 3 and 6). Answer=3.

Problem 87. Union in interaction type (none, then touching, then both none and touching). Answer=4.

Problem 88. Union in intersection angle (obtuse, then acute, then both obtuse and acute). Answer=2.



Problem 89. Union in character style (bold, then serif, then both bold and serif). Answer=2.

Problem 90. Union in relational position (horizontal, then vertical, then both horizontal and vertical). Answer=2.

Problem 91. Union in shape type (one-sided, then four-sided, then both one and four-sided). Answer=2.



Problem 92. Union in line stroke feature (arrow, then curve, then curved arrow). Answer=4.

Problem 93. Union in line stroke style (bold, then dashed, then bold-dashed). Answer=3.

Problem 94. Union in symmetry angle (diagonal, then rotational, then both diagonal and rotational lines). Answer=4.


	. Unicode blocks and fonts used
	. Sample problems
	. Ethics approvals
	. Defining custom schemas
	. Further details on training

