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In this Supplementary Material we provide additional
details that were not included in the main manuscript due to
space constraints. In Section A we provide additional im-
plementation details for our experiments. In Section B we
offer additional evaluation on hard viewpoints (front & back
view). Finally, we present qualitative results including re-
sults on random test samples and failure cases in Section C.

A. Implementation details

Pose estimation networks. In all of our experiments,
we use SimpleBaselines [8] with an ImageNet pretrained
ResNet-18 [3] backbone as the primary 2D pose estimation
network hg. For criterion CF-CM we train Stacked Hour-
Glass [7] with 8 stacks for the auxiliary 2D keypoint detec-
tor g,,. Both networks use input images of size 256 x 256
and predict K heatmaps of size 64 x 64. Random rotations
(+/- 30 degrees) and scaling (0.75-1.25) are used as data
augmentation. We train both models using Adam [5] opti-
mizer with learning rate 1 x 10~* for 50K iterations with
mini-batches of size 32.

CMR. For experiments in Section 4.1 of the main
manuscript, we train CMR [4] with the same hyperparame-
ters as in [4]. We train using Adam [5] optimizer with learn-
ing rate 1 x 10~* for 100K iterations with mini-batches of
size 32. In a preprocessing step, CMR uses SfM on key-
points to initialize the template shape 7' and acquire a cam-
era estimate for each training instance. We use only the key-
points from S to initialize 7". During bundle adjustment, we
use the confidence estimate of each keypoint to weight its
contribution to the total reprojection error.

ACSM. For experiments in Section 4.2 of the main
manuscript, we train ACSM [6]. We only train the network
predicting camera poses and articulations from ACSM. We
train for 70K iterations with mini-batches of size 12 using
Adam [5] optimizer with learning rate 1 x 10~4. We denote
training ACSM in the above way as ACSM-ours.

B. Evaluation on hard viewpoints

In Table 4, we show results from evaluation on hard
viewpoints (front & back view) in Pascal [2]. Those view-
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Horse Cow Sheep
AUC (1) errgp(}) AUC() errr()) AUC(1) errr ()
ACSM Mask) [6] 26.7 49.1 19.3 102.2 14.2 94.7
ACSM (kP+Mask) [0] 243 106.4 - - - -
ACSM-ours 45.0 35.9 417 38.5 423 38.5
ACSM-ours + KP-all 46.3 39.4 39.0 42,0 39.9 49.8
i« ACSM-ours + KP-conf  47.2 37.5 41.6 40.6 44.1 45.1
= ACSM-ours + CE-MT 477 37.0 432 44.4 44.5 36.3
1" ACSM-ours + CF-CM 47.6 36.6 4338 4.7 46.3 37.1
< ACSM-ours + CF-CM?  47.5 36.6 403 36.8 41.9 326
i« ACSM-ours + KP-conf  46.2 36.4 43.6 42.0 424 41.6
®  ACSM-ours + CF-MT 48.3 353 457 44.8 44.7 40.5
' ACSM-ours + CF-CM 478 36.1 418 418 442 36.5
< ACSM-ours + CF-CM?  47.7 335 46.7 39.6 455 33.5

Table 4. Evaluation on hard viewpoints in Pascal. We report
the AUC and camera rotation error errr (in degrees) averaged over
images with hard viewpoints (front & back view). N is the number
of selected images from the web.

points are hard for the following reasons: 1) they are not
frequent in the training sets (most animals are shown from
side views), 2) the instances in those views contain a high
degree of self-occlusion. Similar analysis is not applicable
to Animal Pose [1] since most instances in that dataset are
shown from side views. Results from Table 4 suggest that
using keypoint pseudo-labels does not only improve 3D re-
construction performance in the mean case. The results are
consistent with those in Table 1 & 2 of the main document,
suggesting that consistency-based methods are more effec-
tive in our setting.

C. Additional qualitative results

Birds with CMR. In Figures 7, 8 & 9 we compare the pre-
dictions of CMR trained with: i) 300 labeled images; ii)
the same labeled images and additional keypoint pseudo-
labels, using random test samples from CUB. For each in-
put image, the first 2 columns show the predicted shape and
texture from the inferred camera viewpoint, while the last 2
columns are novel viewpoints of the textured mesh. We ob-
serve that the use of keypoint pseudo-labels during training
significantly improve the 3D reconstruction quality. Train-
ing with pseudo-labels enables the model to capture some
deformations that the fully-supervised model misses (e.g.
open wings in the first row of Figure 9). These results



clearly indicate the merit of using keypoint pseudo-labels
with CMR. Finally, we visualize some failure cases of the
proposed method in Figure 15. In those cases even the CMR
model supervised with all the 6K images from the training
set struggles.

Quadrupeds with ACSM. In Figures 10 & 11 we show
qualitative comparisons between all the methods used for
predicting the 3D shape of quadrupeds. For each input im-
age, we show the predicted 3D mesh from the inferred cam-
era view (first row) and a novel view (second row). We
show results with N = 3K samples from U/ for KP-conf,
CF-MT, CF-CM and CF-CM2. From Figures 10 & 11 we
observe that the quality of the predicted 3D shapes is consis-
tent with the quantitative evaluation conducted in the main
maniscript (Tables 1, 2, 3). First, we observe that ACSM-
ours (trained only with 150 images with keypoint-labels)
achieves more accurate reconstructions than ACSM for all
categories. A failure mode of ACSM is erroneous camera
pose prediction. With ACSM-ours camera poses are im-
proved, but some articulations are not well captured by the
model. Using supervision from all web images (KP-all) in-
creases errors in camera poses and results in unnatural ar-
ticulations (see the prediction for sheep in Figure 10). KP-
conf improves the quality of the predicted shapes compared
to KP-all, but still results in unnatural articulations in some
cases (see the second giraffe’s neck at Figure 11). Finally,
consistency-based filtering can lead in more accurate cam-
era pose and articulation prediction than other alternatives.
For instance, the articulation of the last bear in Figure 11 is
only captured by CF-CM and CF-CM?2.

In Figures 12 & 13 we visualize the recovered 3D shape
for models trained with data selected using consistency-
filtering criteria. For each input image, we show the recov-
ered 3D shape from the predicted and a novel view. As also
captured by the quantitative evaluation in our main paper,
we observe that the quality of the recovered 3D shape is in
some cases higher for CF-CM? compared to other alterna-
tives.

In Figure 14, we visualize some failure cases. We also
include the prediction of the original ACSM model. Com-
mon failure modes include the inability to capture certain
articulations (top row). These articulations are impossible
to be captured by ACSM since it models articulations as
rigid transformations of some pre-defined parts. Another
failure mode is erroneous camera pose prediction for hard
viewpoints (second row). ACSM fails worse in those cases
(see unnatural head prediction in top row of Figure 14).

D. Sample web images from Flickr

In Figure 16 we show 8 random samples per object cat-
egory from the unlabeled web images. Most images are
not suitable from training 3D shape prediction models and
should be filtered out.
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Figure 7. Qualitative results on random samples CUB. For each sample, we compare CMR trained with (first row) and without (second
row) keypoint pseudo-labels. The first 2 columns show the predicted shape and texture from the inferred camera viewpoint. The last 2
columns are novel viewpoints of the textured mesh.



Figure 8. Qualitative results on random samples from CUB. For each sample, we compare CMR trained with (first row) and without
(second row) keypoint pseudo-labels. The first 2 columns show the predicted shape and texture from the inferred camera viewpoint. The
last 2 columns are novel viewpoints of the textured mesh.



Figure 9. Qualitative results on random samples from CUB. For each sample, we compare CMR trained with (first row) and without
(second row) keypoint pseudo-labels. The first 2 columns show the predicted shape and texture from the inferred camera viewpoint. The
last 2 columns are novel viewpoints of the textured mesh.
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Figure 11. Qualitative results for quadrupeds. Qualitative comparisons between all methods with images from COCO. For each image,
we show the articulated shape from the inferred camera viewpoint (top row) and a side view (bottom row).
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Figure 12. Qualitative results on random samples for quadrupeds. We visualize the recovered 3D shape from the predicted (a, c, ) and
anovel view (b, d, f) for models trained with data selected from consistency-based criteria.



Figure 13. Qualitative results on random samples for quadrupeds. We visualize the recovered 3D shape from the predicted (a, c, ) and
anovel view (b, d, f) for models trained with data selected from consistency-based criteria.
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Figure 14. Failure cases for quadrupeds. For each sample, we show the predictions from the inferred (left column) and a novel (right
column) view. Common failure modes include errors in articulations (top row) that the ACSM model is not possible to capture by design,
and erroneous camera pose prediction for hard viewpoints.

Figure 15. Failure cases for birds. We compare CMR trained with (first row) and without (second row) keypoint pseudo-labels. For a
reference, we also show the fully-supervised model trained with 6K mask and keypoints annotations (third row). The first 2 columns show
the predicted shape and texture from the inferred camera viewpoint. The last 2 columns are novel viewpoints of the textured mesh. We can
see that even the fully-supervised model struggels in those cases.



Horse Shee Giraffe Bear

Figure 16. We randomly sample 8 images per object category from the unlabeled web images to stress the necessity for an effective data
selection mechanism in our setting.
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