
Appendix

This Appendix provides additional details and qualita-
tive results organized as follows. In Appendix A, we thor-
oughly describe the datasets used in our paper. Additional
details about concurrent methods and comparison are dis-
cussed in Appendix B. A detailed description of the evalu-
ation protocols is presented in Appendix C. Additional re-
sults on semi-supervised video segmentation are reported
in Appendix D. In Appendix E, we briefly discuss the effi-
ciency and computational overhead of CrOC. Finally, we
provide examples of the clusters found on the combined
views of complex scene images with the proposed online
clustering algorithm in Appendix F.

A. Datasets

COCO. The COCO (Microsoft Common Objects in Con-
text) dataset [29] consists of scene-centric images span-
ning 91 stuff categories and 80 objects/things categories.
The train2017, val2017 and test2017 splits incor-
porate approximately 118k, 5k and 41k images, respec-
tively. Additionally, a set of ∼123k unlabeled images,
unlabeled2017, can be used in conjunction with the
train2017 split to obtain the so-called COCO+ training
set.
COCO-Things. The COCO-Things dataset follows
the implementation of [51]. This dataset is based on
COCO images and the panoptic labels of [24]. More pre-
cisely, the instance-level labels are merged, and so are the
80 “things” categories, yielding the following 12 super-
categories: electronic, kitchen, appliance,
sports, vehicle, animal, food, furniture,
person, accessory, indoor, and outdoor. As the
underlying images are the same as in the COCO dataset, so
are the training/validation/test splits.
COCO-Stuff. The COCO-Stuff dataset follows the im-
plementation of [51]. The stuff annotations are those of
[3]. As for COCO-Things, the 91 “stuff” categories are
merged into 15 super-categories: water, structural,
ceiling, sky, building, furniture-stuff,
solid, wall, raw-material, plant, textile,
floor, food-stuff, ground and window. This
dataset follows the same training/validation/test splits as in
the COCO dataset.
PVOC12. The PASCAL VOC12 (PVOC12) dataset [13]
is a scene-centric dataset. The trainaug split relies on
the extra annotations of [17] such that 10582 images with
pixel-level labels can be used for the training phase as op-
posed to the 1464 segmentation masks initially available.
The validation set encompasses 1449 finely annotated im-
ages. The dataset spans 20 object classes (+1 background
class): person, bird, cat, cow, dog, horse, sheep,
aeroplane, bicycle, boat, bus, car, motorbike,

train, bottle, chair, dining table, potted
plant, sofa, tv/monitor and background.
ADE20K. The ADE20K dataset [50] is a scene-centric
dataset encompassing more than 20K scene-centric images
and pixel-level annotations. The labels span 150 semantic
categories, including “stuff” categories, e.g. sky, road, or
grass, and “thing” categories, e.g. person, car, etc.

B. Implementation details

B.1. Comparison with competing methods

To compare CrOC on an equal footing with concurrent
methods, we evaluate all baselines using our evaluation
pipeline, except for the evaluation of ResNet50 on the semi-
supervised video segmentation task which are taken as is
from [49]. With our implementation, the results were worse
than the ones reported in [49] or [21]; hence we report their
results. Furthermore, for BYOL [15]3, ORL [47], DenseCL
[41], SoCo [43], ReSim [45], PixPro [48], VICRegL [2] and
CP2 [39], we use publicly available model checkpoints. The
only two exceptions are MAE [18] and DINO [6] methods.
Indeed, no public model checkpoint exists for ViT-S/16 pre-
trained with MAE. Since our implementation builds upon
DINO, it is important to have CrOC and DINO models
trained in a similar setting for comparison purposes.
MAE. The ViT-S/16 is pre-trained under MAE framework
on the COCO dataset with the following parameters:

• mask ratio: 0.75
• weight decay: 0.05
• base lr: 0.00015
• min lr: 0.0
• warmup epochs: 40
• batch size: 256
• epochs: 300

We use the following decoder architecture:

• decoder embed dim: 512
• decoder depth: 8
• decoder num heads: 16

DINO. The ViT-S/16 is pre-trained under DINO frame-
work on the COCO dataset with the following parameters4:

• out dim: 65536
• norm last layer: false
• warmup teacher temp: 0.04
• teacher temp: 0.07
• warmup teacher temp epochs: 30
• use fp16: true
• weight decay: 0.04
• weight decay end: 0.4
3The checkpoint for BYOL is provided and trained by the authors of

ORL [47].
4CrOC uses the same setting.



• clip grad: 0
• batch size: 256
• epochs: 300
• freeze last layer: 1
• lr: 0.0005
• warmup epochs: 10
• min lr: 1e-05
• global crops scale: [0.25, 1.0]
• local crops number: 0
• optimizer: adamw
• momentum teacher: 0.996
• use bn in head: false
• drop path rate: 0.1

C. Evaluation protocols
For all evaluation protocols and models, the evaluation

operates on the frozen features of the backbone. The pro-
jection heads, if any, are simply discarded. The output fea-
tures from layer4 of ResNet50 are used in all downstream
tasks. The resulting features have dimension d = 2048,
whereas the spatial tokens of a ViT-S/16 have dimension
d = 384 only. We concatenate the spatial tokens from the
last nb transformer blocks, similar to [6], to compensate for
that difference.
Transfer learning via linear segmentation. Our imple-
mentation is based on that of [38,51]. The input images are
re-scaled to 448 × 448 pixels and fed to the frozen model.
Following existing works [51], in the case of ResNet50, di-
lated convolutions are used in the last bottleneck layer such
that the resolution of the features is identical for all models.
Prior to their processing by the linear layer, the features are
up-sampled with bilinear interpolation such that the predic-
tions and the ground-truths masks have the same resolution.
Unlike previous works [2, 38, 51], we use Adam [23] as an
optimizer instead of SGD. Indeed, we observe that this led
to significant improvements for all baselines, indicating that
the reported results were obtained in a sub-optimal regime
and hence did not fully reflect the quality of the learned
features. We report results on the PVOC12 validation set
after training the linear layer on the trainaug split for 45
epochs. For the COCO-Things and COCO-Stuff, the linear
layer is first trained for 10 epochs on the training set and
subsequently evaluated on the validation set. Regardless of
the evaluation dataset and model, we find that a learning
rate lr=1e-3 works well and that the selected number of
epochs is sufficient to reach convergence. Note that con-
trary to [51], which randomly samples 10% of the COCO-
Things/-Stuff training images, we use the full set of avail-
able images to avoid introducing additional randomness in
the results.

For the evaluation with ADE20K, we rely on MM-
Segmentation [9] and the 40k iterations schedule. We
set the batch size to 16, and we report for each

method the best result after trying learning rates in
{1e-03,8e-04,3e-04,1e-04,8e-05}.
Transfer learning via unsupervised segmentation. Our
implementation is based on that of [38, 51]. The input
images are re-scaled to 448 × 448 pixels and fed to the
frozen model. Following existing works [51], in the case
of ResNet50, dilated convolutions are used in the last bottle-
neck layer such that the resolution of the features is identical
for all models. Similarly to [51], the ground-truth segmen-
tation masks and features are down-/up-sampled to have the
same resolution (100 × 100). Consequently, we ran K-
Means on the spatial features of all images with as many
clusters as there are classes in the dataset. A label is greed-
ily assigned to each cluster with Hungarian matching [25].
We report the mean Intersection over Union (mIoU) score
averaged over five seeds. Importantly, [51] observed that
better results could be obtained by using a larger number
of clusters K than the number of classes in the dataset and
hereby having clusters of object-parts instead of objects. In-
deed, if this approach provides information on the consis-
tency of the features within object-part clusters, it does not
tell anything about the inter-object-parts relationship. For
instance, the mIoU scores will reflect the ability of features
corresponding to “car wheels” to be clustered together and
similarly for “car body” features, but it won’t be impacted
by the distance of the two clusters from one another, which
is undesirable. We report results on the PVOC12, COCO-
Things, and COCO-Stuff validation sets.
Semi-supervised video object segmentation. The semi-
supervised video object segmentation evaluation follows
the implementation of [6, 49]. We report the mean contour-
based accuracy Fm, mean region similarity Jm and their
average (J&F)m on the 30 videos from the validation set
of the DAVIS’17 [34]. The following parameters are used:

• n last frames: 7

• size mask neighborhood: 12

• topk: 5

D. Semi-supervised video segmentation results

Good results are obtained on the semi-supervised video
segmentation (Table A1), indicating the ability of CrOC to
produce features consistent through time and space.

E. Computational overhead

An important property of CrOC is that it generates
pseudo-labels/cluster assignments online. Consequently,
this step must be efficient. In Table A2, we verify that the
operations inherent to the clustering step amount to less than
10% of the total time of the CrOC pipeline.



Table A1. Semi-supervised video object segmentation task. The
frozen spatial features are evaluated on the video segmentation
task by nearest neighbor propagation DAVIS’17 challenge. The
mean region similarity Jm, mean contour-based accuracy Fm,
and their average (J&F)m are reported. † indicates results taken
from [49].

Method Model Dataset (J&F)m Jm Fm

Global features
DINO [6] ViT-S/16 COCO 57.1 55.3 58.9

Local features
DenseCL† [41] ResNet50 ImageNet 50.7 52.6 48.9
ReSim† [45] ResNet50 ImageNet 49.3 51.2 47.3
DetCo† [46] ResNet50 ImageNet 56.7 57.0 56.4
ODIN [21] ResNet50 ImageNet 54.1 54.3 53.9
MAE [18] ViT-S/16 COCO 48.9 47.3 50.6
CP2 [39] ViT-S/16 ImageNet 53.7 51.3 56.1

Ours
CrOC ViT-S/16 COCO 57.4 55.7 59.1
CrOC ViT-S/16 COCO+ 58.4 56.5 60.2
CrOC ViT-S/16 ImageNet 44.7 43.5 45.9

Table A2. The runtime of the main operations in CrOC for a
batch size of 256 samples distributed over 2 Tesla V100. CrOC-
specific operations are highlighted.

operation absolute time [ms] relative time [%]

ft(·) + ht(·) 177.8 21.1
fs(·) + hs(·) 183.9 21.9
Q∗ = C(·) 67.0 8
ht(·) + hs(·) 4.8 0.5
backprop. + EMA 408.0 48.5
total 841.5 100

F. Qualitative results
The cluster assignments found by CrOC’s dedicated on-

line clustering algorithm C over the combined views are de-
picted in Fig. A1. The model used to generate the illustrated
assignments is pre-trained on the COCO+ for 300 epochs
with CrOC and the following meta-parameters: λpos = 4,
Kstart = 12 and values tokens. During training, we use
the same augmentations as in DINO [6]; consequently, we
visualize the generated masks based on augmented views in
the same manner, such that the results depicted in Fig. A1
truly reflect the consistency enforced by CrOC.



Figure A1. Illustration of the clusters found online in the space of the combined views. Rows correspond to combined views and
columns to heads of the ViT. Bicubic interpolation is used to up-sample the assignments Q∗ to the same resolution as the images.


