
7. Supplementary Materials

7.1. BASiS Decoder

In Sec. 5 we illustrate the extensive uses of spectral em-
bedding and how to use BASiS to learn it. As has been
extensively researched, the orthogonal basis defined by the
spectral decomposition of the graph-Laplacian can preserve
significant features of the data (e.g. DM’s representation,
as shown in Fig. 5) and contribute to the performance of
diverse learning problems (for example clustering, as illus-
trated in Sec. 5.2).

In this section we examine another use of the spectral
representation in an Encoder-Decoder system. We train 3
concatenated networks: Encoder, BASiS and Decoder, over
2 digits of MNIST: 0 and 1 (The architectures and train-
ing parameters are detailed in the Tab. 2 and Tab. 3). The
Encoder and the Decoder are trained to minimize the re-
construction error (that is, the output of the Decoder should
be close in Euclidean sense to the input image). BASiS
is trained as described in Algorithm 1. In addition, Algo-
rithm 2 is used to deal with changes in the input features
to BASiS, cased by the Encoder update. The spectral em-
bedding dimension set to 9. The 3 models were trained for
2500 iterations. During the inference, a test image is passed
through the 3 networks.

Next, we extract the spectral embedding (that is, the
output of BASiS for the given test image) and exam-
ine the response of the Decoder to multiplication of each
one of the first 5 dimensions by one of the constants
{−2,−1.5,−1,−0.5,0,0.5,1,1.5,2} . The output of the
Decoder for all the mentioned options is shown in Fig. 9. It
can be noticed that different features of the resulting image
correspond to different dimensions of the spectral embed-
ding. For example, changes in the first dimension affect, as
expected based on spectral clustering theory, on the label of
the image, where for non-spectral embedding (i.e., standard
Encoder-Decoder system) there is no dimension that is di-
rectly responsible on this feature. Furthermore, when exam-
ining the changes in the output image as a result of chang-
ing the constant by which a given dimension is multiplied,
it can be noticed that the change is carried out smoothly.
This distinction is consistent with the result shown in the
toy examples of Fig. 1, where the model smoothly divides
the space.

7.2. Alignment Transformation Calculation

In this section we detail about the solution of the least
squares problem of finding the alignment transformation.
For simplicity, let us assume K = 2. In this case, the optimal
transformation for the optimization problem of Eq. (13), for

a single anchor i is the one that sustains(
ϕ

a,re f
i (1)

ϕ
a,re f
i (2)

)
=

(
t1 t2 t3
t4 t5 t6

)
︸ ︷︷ ︸

T

ϕa
i (1)

ϕa
i (2)
1

 . (22)

Equivalently , one can write(
ϕ

a,re f
i (1)

ϕ
a,re f
i (2)

)
=

(
ϕa

i (1) ϕa
i (2) 1 0 0 0

0 0 0 ϕa
i (1) ϕa

i (2) 1

)


t1
t2
t3
t4
t5
t6


︸ ︷︷ ︸

t

,

where t is the column representation of T . Note that each
anchor provides two constraints. Since, the transforma-
tion has 6 degrees of freedom (DOF), at least 3 anchors
are needed. However, as mentioned in Sec. 4, it is recom-
mended to use more constraints. Given l anchors the affine
transformation can be calculated by solving the following
equation system

min
t
||Mt−h||22, (23)

where,

M =



.

.
ϕa

i (1) ϕa
i (2) 1 0 0 0

0 0 0 ϕa
i (1) ϕa

i (2) 1
.
.


∈ R2l×6

h =



.

.

ϕ
a,re f
i (1)

ϕ
a,re f
i (2)

.

.


∈ R2l .

Now it is possible to find the vector t, and the transfor-
mation T , by a simple least squares problem that takes into
account all the constraints. Note that expanding the spectral
dimension to K > 2 is immediate and only affects the sizes
of the matrices.

7.3. Technical Details

7.3.1 Data Sets

In Sec. 5.2 we compare between BASiS and competing
models over 4 well-known datasets. Examples of which

Figure 9. The Decoder response for changes in the spectral embedding. The reconstructed images obtained after changes in the first
5 dimensions of the spectral representation of a test image. Each line corresponds to one of the 5 dimensions, each column represents a
multiplication of the original value by one of the constants {−2,−1.5,−1,−0.5,0,0.5,1,1.5,2} respectively.

can be found in Fig. 10. In this section we describe those
datasets.

MNIST. The Modified National Institute of Standards
and Technology database includes 70,000 gray-scale im-
ages of handwritten digits, labeled from 0 to 9. The orig-
inal size of the images is 28×28. The dataset is divided to
60,000 training images and 10,000 test images.

Fashion-MNIST. This dataset includes gray-scale im-
ages divided into categories of fashion products (e.g. T-
shirt, Sandal, Bag etc.). It is identical to the original MNIST
in the training and test sets size and in the image dimen-
sions.

SVHN. The Street View House Numbers dataset con-
tains real-world RGB images of dimension 3× 32× 32.
This dataset includes 73,257 training images and 26,032
test images, labeled from 1 to 10.

CIFAR-10. The Canadian Institute For Advanced Re-
search dataset includes RGB images of size 3×32×32 la-
beled as animals (e.g. cat, dog) and vehicle (e.g. airplane,
truck). This dataset includes 50,000 training images and
10,000 test images.

Siamese Network Representation. Siamese Networks
are DNNs trained to find a low-dimensional representation
of the data, with Contrastive loss, Eq. (21). In the training
process, the data is divided into pairs from the same class
(labeled as positive), and pairs from different classes (la-
beled as negative). In the obtained representation, instances
from the same class are expected to be close to each other,
in the sense of Euclidean distance, where instances from
different classes far from each other. Therefore, this repre-
sentation is useful when working with the affinity matrix,
Eq. (1), which is based on Euclidean distance between the
graph nodes.

Figure 10. Datasets Samples. Images from the different datasets:
MNIST (1st row), F-MNIST (2nd row), SVHN (3rd row), CIFAR-
10 (4th row).

Spectral Modules Siamese Net
(gray-scale)

Siamese Net
(RGB)

Encoder Decoder

Linear (size=256) Conv2d (o=20) Conv2d (o=32) Conv2d (o=8) Linear (size=128)
ReLU MaxPool ReLU ReLU ReLU

Linear (size=512) Conv2d (o=50) Conv2d (o=64) Conv2d (o=16) Linear (size=288)
ReLU MaxPool ReLU BatchNorm Unflatten (size=(32,3,3))

Linear (size=512) Flatten MaxPool ReLU ConvTranspose2d (o=16)
ReLU Linear (size=512) Conv2d (o=32) Conv2d (o=32) BatchNorm

Linear (size=256) ReLU ReLU Flatten ReLU
ReLU Linear (size=16) Conv2d (o=8) Linear (size=128) ConvTranspose2d (o=8)

Linear (size=K) ReLU ReLU BatchNorm
ReLU MaxPool Linear (size=16) ReLU

Flatten ConvTranspose2d (o=1)
Linear (size=256) Sigmoid

ReLU
Linear (size=16)

Sigmoid

Table 2. Architectures. The architectures of the DNNs for the spectral modules (BASiS and the competing methods) and all the other
mentioned networks. K is the dimension of the spectral embedding, o stand for the number of output channel in Conv2d and ConvTrans-
pose2d layers.

Spectral Modules Siamese Net (gray-scale) Siamese Net (RGB) Encoder Decoder

Batch size 512 128 256 512 512

Learning rate 10−4 10−3 10−3 10−3 10−3

Optimizer Adam Adam Adam Adam Adam

Epochs - 500 1000 - -

Table 3. Additional training parameters The training parameters of the different DNNs. The Spectral Modules, the Encoder and the
Decoder are not trained with fixed-epochs but with samples from the entire training set drawn in each iteration.

7.3.2 Networks Implementation

In this section we provide the implementation details of the
networks we have worked with. The architectures for all
the networks are detailed in Tab. 2. Additional parameters
of the training are summarized in Tab. 3.

Spectral Modules. To fairly compare between BASiS
and the other spectral models mentioned in Sec. 3, we used
the same architecture with the same parameters for all the
methods. The architecture is based on a simple fully con-
nected network with ReLU activation between the layers.
The output is of dimension K which is the number of eigen-
vectors the DNN learns. As suggested in [24], in order to
obtain a good generalization, the minibatches for the spec-
tral modules are randomly sampled from the entire train-
ing set, and not by using fixed epochs. Working with fixed
epochs in the context of spectral models means learning the
eigenvectors of submatrices of the graph-Laplacian. In or-
der to avoid this and to learn a more generalized model, the
spectral models are trained for 1000 iterations, with m in-

stances being sampled from the entire training set, in each
iteration.

Siamese Network. The Siamese networks are imple-
mented as CNNs. We use two different architectures, one
for gray-scale images (MNIST and Fashion-MNIST) and
one for RGB images (SVHN and CIFAR-10). The new
lower-dimension, for all the dataset, set to 16. Note that
when we refer to batch size in the context of Siamese net-
works we mean pairs of images (some of which are labeled
as positive and some as negative). For the gray-scale model
the kernel size of the convolution layer set to k = 5, the
stride parameter is s= 1 and the padding parameter is p= 0.
For the RGB model the convolution layer parameters are
k = 3,s = 1, p = 1. The Max-Pooling parameters for both
models are k = 2,s = 2, p = 0. Note that we use these net-
works for the spectral clustering experiment of Sec. 5.2 and
also as the features model in Sec. 5.4.

Encoder-Decoder. The Encoder and Decoder of
Sec. 7.1 are implemented as CNNs. The parameters of

the convolution layer of the Encoder and the transpose-
convolution of the Decoder are k = 3,s = 2, p = 0. Since
BASiS model is trained between the Encoder and the De-
coder, those models are also trained with iterations and not
with pre-defined epochs.

7.3.3 Additional Implementation and Analysis Details

In all experiments, the affinity matrix W is defined by the
number of nearest neighbors to each node. In order to
maintain symmetry, we update the matrix such that W ←
(W +W T). The soft-threshold parameter σ set, for MNIST
and Fashion-MNIST dataset, by the distance from the 7th
nearest neighbor to each node. For SVHN and CIFAR-10
we used fixed value of 1000.

Diffusion Net. The hyper parameters of the loss func-
tion, Eq. (7), set to µ = 10−8 and η = 100. As mentioned
in Sec. 5.2, DN’s training process is not scalable. Therefore,
we randomly sample a batch-sized subset of the training
set, and train the network based on this subset analytically
calculated spectral embedding. We chose this setting, on
the one hand, to fairly compare DN with the other models,
which deal with a batch-size subgraph in each iteration, and
on the other hand, to illustrate the problematic nature of DN,
which is limited in its ability to deal with large and complex
datasets. We note that in order to get good performance
with this model it is necessary to define the graph using a
sufficiently large environment for each node. As shown in
Fig. 4, when the environment of each node is small, the per-
formance of the model is highly dependent on the sampled
training-batch and therefore a very large standard deviation
is obtained.

SpectralNet1. Follow the instruction of the authors, at
each iteration we do an orthogonalization step and gradi-
ent step. At the orthogonalization step we draw batch and
update the last layer of the network by performing QR de-
composition, via the Cholesky decomposition, over the in-
puts to this layer. At the gradient step, we draw a new batch
and update all the network weights, except those of the last
layer, based on the gradient of the loss function, Eq. (8).
Note that in Sec. 5.2 we calculate the spectral embedding
of the normalized- Laplacian LN and therefore we normal-
ize yi,y j of Eq. (8) with the corresponding node’s degree as
mentioned in Sec. 3.

SpectralNet2. In this model, the authors wish to waive
the orthogonality step of SpecNet1. From the experiments
we performed it seems that the orthogonality of the DNN’s
output Y is not sufficient. Orthogonality is achieved only
after performing the post processing step over Y using the
matrix O of Eq. (10). In addition, to get consistent per-
formance at inference, for all the measures we examined,
it is necessary to perform the post processing over all the
test instances. That is, the solution of Eq. (10) should be

performed over Y which includes the DNN’s output for the
entire test set. Otherwise, an inconsistency is obtained be-
tween different batches of the test images. This conclusion
greatly limits the model when it is required to work with
large test set.

BASiS. In all the experiments, the RANSAC algorithm
is used for the calculation of the alignment transformation.
The algorithm is preformed for 100 iterations. In each iter-
ation, the transformation is calculated based on 20 anchors,
draw randomly from all the given l anchors. For the trans-
formation computed at each iteration, we calculate the re-
construction error based on all the given anchors and count
the number of inliers for a tolerance set to 0.1. During the
running of the algorithm we keep the iteration where the
amount of inliers is the largest. The final transformation is
calculated based on those inliers.

We note that the parameters in 5.2 (e.g. batch size, num-
ber of neighbors per node, number of iterations etc.) were
chosen such that all the models could be stably trained.
Since BASiS is fully-supervised and based on a simple
MSE loss, we achieve good and stable performance also
when changing those parameters.

