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A. Experiments on Swin Transformer
Apart from using ViT [3] as the visual backbone, we also conduct experiments on the Swin Transformer [8]. Following

the settings reported by QRNet [14] and LAVT [13], we evaluate the proposed VG-LAW framework on Swin-S and Swin-B
for REC and RES tasks, respectively. The main results are summarized to Tab. 1.

Methods
Visual Multi- RefCOCO RefCOCO+ RefCOCOg ReferItGame

Backbone task val testA testB val testA testB val test test

REC:
RefTR [7] RN101 ! 82.23 85.59 76.57 71.58 75.96 62.16 69.41 69.40 71.42

QRNet [14] Swin-S % 84.01 85.85 82.34 72.94 76.17 63.81 71.89 73.03 74.61
VG-LAW Swin-S % 84.82 87.22 81.94 74.36 78.49 65.24 75.61 76.28 74.83
VG-LAW Swin-S ! 85.77 87.48 82.36 75.65 80.12 65.48 76.33 76.81 76.08

RES:
RefTR [7] RN101 ! 70.56 73.49 66.57 61.08 64.69 52.73 58.73 58.51 -
LAVT [13] Swin-B % 74.46 76.89 70.94 65.81 70.97 59.23 63.62 63.66 -
VG-LAW Swin-B % 75.09 77.02 72.46 66.56 70.67 59.09 64.43 65.39 -
VG-LAW Swin-B ! 75.37 77.31 72.64 66.81 70.92 59.41 65.46 65.68 -

Table 1. Comparison with state-of-the-art methods on RefCOCO [15], RefCOCO+ [15], RefCOCOg [10] and ReferItGame [5] for REC
and RES tasks. RN101, Swin-S, and Swin-B are shorthand for the ResNet101, Swin-Transformer Small, and Swin-Transformer Base,
respectively. We highlight the best and second best performance in the red and blue colors.

It can be observed that: (1) for the REC task, VG-LAW achieves the best performance on all four datasets when using the
multi-task configuration, and the second-best performance except for the testB split on RefCOCO. Compared to the state-
of-the-art REC method QRNet [14], which follows the TransVG [2] by using the transformer-based cross-modal interaction
module and introduces extra multiscale fusion structures, ours VG-LAW is more compact and lightweight by just using a Swin
backbone filled with expression-adaptive weights and a neat multi-task head. (2) For the RES task, VG-LAW achieves the
best and second-best performance on RefCOCO and RefCOCOg datasets, and comparable performance on the RefCOCO+
dataset. Compared to the state-of-the-art RES method LAVT [13], which introduces the PWAM module based on the scaled
dot-product attention and FPN-like decoder head, the VG-LAW is still compact and lightweight. The most obvious difference
between VG-LAW and PWAM is that VG-LAW simply modifies the weights which are then used to extract expression-aware
visual features, whereas PWAM incorporates linguistic features directly into the computation of the dot-product attention.

B. Experiments on Large-scale Pre-training Datasets
To compare with the methods [1, 4, 9, 12] trained on large-scale datasets, we also build a large-scale pre-training dataset

by collecting images and annotations from the train split of RefCOCO/+/g, ReferItGame, Flickr30k Entities [11], and VG
regions [6]. This dataset contains 174K images with nearly 6.1M referring expressions. We pre-train the models for 40
epochs with a batch size of 512, which are then fine-tuned on each specific dataset for 20 epochs with a batch size of 256.
The pre-training results are summarized to Tab. 2.

C. Comparison of FLOPs and Inference Time
We also evaluate the FLOPs using fvcore and inference time on one 1080Ti GPU. The results are summarized to Tab. 3.
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Method
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val-u test-u

ViLBERT [9] - - - 72.34 78.52 62.61 - -
VL-BERT [12] - - - 72.59 78.57 62.30 - -
UNITER [1] 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77
MDETR [4] 87.51 90.40 82.67 81.13 85.52 72.96 83.35 83.31

VG-LAW 89.27 91.63 86.46 81.56 85.77 74.10 83.56 84.37

Table 2. Comparison with large-scale pre-training SOTA methods.

Method
Multi- Visual

FLOPs(G) Runtime(ms)task Backbone

QRNet [14] % Swin-S 81.9 64.7
LAVT [13] % Swin-B 193 67.9
VG-LAW % ViT-B 74.3 49.4
VG-LAW ! ViT-B 77.3 50.2

Table 3. Comparison of FLOPs and inference time.
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