
Supplementary Material for:
Omnimatte360: Associating Objects and their Effects

in Unconstrained Monocular Video

A. Network Architectures (Sec. 3.1)
Table A.1 the network architecture for the UNets use in

our model. Each Resblock consist of two 3× 3 convolution
layer with swish activations and a skip connection between
the input and output. A Downsample / Upsample Resblock
has an additional downsampling / upsampling layer before
the initial convolution.

Network Blocks Out Channels

3x3 Conv 4

Resblock x 3 4
Downsample Resblock 4
Resblock x 3 8
Downsample Resblock 8
Resblock x 3 16
Downsample Resblock 16
Resblock x 3 32
Downsample Resblock 32
Resblock x 3 32

Resblock 32
Resblock 32

Skip-Resblock x 3 32
Upsample Resblock 32
Skip-Resblock x 3 32
Upsample Resblock 32
Skip-Resblock x 3 16
Upsample Resblock 16
Skip-Resblock x 3 8
Upsample Resblock 8
Skip-Resblock x 3 4

Table A.1. Architecture for the UNets used in our model.

B. Loss hyperparameters (Sec. 3.3)
We use the following weights for the loss term:

• λ1 = 1.0 for the reconstruction loss Lrecon

• λ2 = 1.0 for the projection consistency loss Lproj

• λ3 = 0.01 for the mask loss Lmask

• λ4 = 1.0 for the disparity loss.

• λ5 = 5 · 10−4 and γ = 2 for the sparsity loss Lsp

The schedule for these weights are described in Section 4.1.

C. Additional Training Details
For the videos from DAVIS [3], we resize the frames to

a resolution of 160 × 320. Our models are trained for 30k
iterations per-scene with a batch size of 4 using 4 V100s.
Training our model takes approximately an hour per-scene.
We implement our code base in JAX/Flax.

D. Editing Effects Implementation Details
(Sec. 4.4)

Depth-based editing effects such as synthetic defocus or
rerendering along a smoothed camera path require depth
in for the foreground layers in addition to the background
layer. Our optimization does not directly produce fore-
ground depth, but we can extract an approximate fore-
ground depth Di

a from the output alpha matte Ai
a and the

input single-layer depth map Da. We use image erosion on
the alpha matte to construct a high-confidence binary mask
that covers the internal areas of the foreground without
boundary pixels. We then apply this mask to the depth map
Da to produce a partial foreground depth map with valid
pixels only inside the high-confidence mask. We then out-
paint this partial foreground depth map using standard tools
(Inpaint node in NUKE [1]) to fill depth values everywhere
in the image. The result is a depth map Di

a that “bleeds”
the foreground object’s depth outside the foreground object
mask.

To construct the depth-based effects, we apply the ef-
fect separately to each layer using their corresponding depth
maps: Di

a for the foreground objects, Dbg
a for the back-

ground, then composite using the alpha mattes Ai
a. For

synthetic defocus, we apply the same depth-based defocus



effect (ZDefocus in NUKE) to each layer, then composite.
For 3D rerendering (camera stabilization), we separately re-
project each layer, then composite.

Treating the layers separately in this manner better cap-
tures fine details that may be missed by the single-layer
depth map Da. See supplementary video for comparison
with single-layer depth-based warping or depth-based defo-
cus.

E. Additional Results
We provide additional layer decomposition results on 40

videos from the DAVIS [3] dataset. These results can be
viewed by opening main.html in the supplementary zip
file in a chrome browser. For each video, we show the back-
ground and object layers predicted by our method as well as
Omnimatte [2]. The webpage additionally provides a slider
interface to compare these output with the input video as
well as with each other.
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