
Supplementary Material for Correspondence Transformers with Asymmetric
Feature Learning and Matching Flow Super-Resolution

Yixuan Sun1, Dongyang Zhao2, Zhangyue Yin2, Yiwen Huang2,
Tao Gui2, Wenqiang Zhang1,2 and Weifeng Ge2,†

1Academy of Engineering & Technology, Fudan University, Shanghai, China
2School of Computer Science, Fudan University, Shanghai, China

wfge@fudan.edu.cn

1. Further Analysis of ACTR
Motivation for the baseline model design: In ACTR,
we use iBOT [17] pre-trained on ImageNet [4] as our fea-
ture backbone, and propose asymmetric feature learning
and matching flow superresolution to achieve accurate se-
mantic matching. Since the iBOT feature backbone [17] is
a very strong backbone, we need to design baseline methods
that are comparable with ACTR. We replace the asymmet-
ric feature learning module with the commonly used sym-
metric one [7, 15], and replace the matching flow superres-
olution with a bilinear flow upsampler. To compare ACTR
with the baseline models fairly, we adjust the hyperparam-
eters in the baseline models to ensure that the amount of
parameters in the baseline models is almost the same as that
in ACTR. As shown in Table 4 (in the main paper), exper-
imental results on SPair-71k [11] demonstrate that asym-
metric feature learning and matching flow superresolution
are vital for ACTR to achieve impressive results.

Table 1. Comparison among ACTR and other image matching
methods, such as COTR [7] and GMFlow [15] on SPair-71k [12].
N/A stands for not converge. We use the publicly available codes
to conduct training on SPair-71k.

Methods Backbone Matching Head Param(M) PCK@0.1

ACTR-S iBOT-S Biased attention 44.2 55.8
COTR ResNet-50 Cross attention 18.4 45.0
COTR iBOT-S Cross attention 43.4 51.6
GMFlow CNN Cross attention 4.68 N/A
GMFlow iBOT-S Cross attention 49.3 53.7

Differences among ACTR and other image matching
methods: ACTR is designed to solve the semantic match-
ing problem, which aims to match semantics across ob-
jects or scenes with great variations in appearances and
layouts. While for image matching methods, they need
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to get dense matching results that match objects or scenes
in different views. In image matching, local feature de-
scriptors are much more important than high-level seman-
tics, so most image-matching methods conduct the match-
ing process on feature maps with high resolution. ACTR
exploits low-resolution features with rich semantic informa-
tion to conduct asymmetric feature learning and uses match-
ing flow superresolution to distinguish subtle local differ-
ences. While other image-matching methods conduct im-
age matching based on low-level feature descriptors with
symmetric feature learning structures.

We directly apply image matching methods, such as
COTR [7] and GMFlow [15], to conduct semantic match-
ing. We use the same training method as ACTR to train
them on the SPair-71k dataset. From Table 1, we can find
that the training of GMFlow does not converge and the
COTR gets 45.0%. Since the amounts of learnable param-
eters in GMFlow and COTR are relatively small, they are
promising to be adapted for semantic matching tasks. We
also implemented COTR and GMFlow with iBOT-S back-
bone, we report the result as 51.6% and 53.7%. Especially
to point out that attention blocks of COTR are used to build
up our Baseline.

2. Further Quantitative Results for ACTR

2.1. Class Level Evaluation Results on SPair-71k

Table 2 shows ACTR with 256 × 256/512 × 512 input
resolutions surpasses all SOTA methods based on CNN fea-
ture backbones as well as CATs [3], TransforMatcher [8]
and VAT [6] in iBOT-B feature backbones clearly. Note that
our model performs well on difficult classes {bike, chair,
pottle plant, and sheep} that previous works [3,6,10,11,16]
often fail. Compared with the previous state-of-the-art
method TransforMatcher [16], with the same input resolu-
tion of 256, our method outperforms it by {9.2%, 9.7%,
4.7%, 14.2%} on PCK@αbbox = 0.1 for these classes.



Table 2. Per-class level quantitative evaluation results on SPair-71k [12] benchmark, ‡ stands for the method implemented with iBOT-B
backbone same with ACTR, the best results are in bold.

Methods aero. bike bird boat bott. bus car cat chai cow dog hors. mbik. pers. plan. shee. trai. tv all

SCOT [9] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20 42.9 42.5 31.1 29.8 35 27.7 24.4 48.4 40.8 35.6
DHPF [13] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3
CATs [3] 52 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52 42.6 41.7 43 33.6 72.6 58 49.9
MMNet [16] 55.9 37 65 35.4 50 63.9 45.7 62.8 28.7 65 54.7 51.6 38.5 34.6 41.7 36.3 77.7 62.5 50.4
TransforMatcher [8] 59.2 39.3 73.0 41.2 52.5 66.3 55.4 67.1 26.1 67.1 56.6 53.2 45.0 39.9 42.1 35.3 75.2 68.6 53.7

CATs‡ [3] 56.7 41.3 77.8 35.0 54.8 59.8 45.2 69.9 31.4 63.7 57.6 62.5 46.7 49.1 43.2 43.5 76.4 64.1 55.2
TransforMatcher‡ [8] 57.1 47.4 83.5 42.3 56.8 57.0 55.4 75.3 34.5 66.1 64.2 60.2 52.8 55.2 40.5 46.0 75.1 65.8 57.9
ACTR 65.1 48.5 82.3 50.4 55.9 65.3 63.1 72.8 35.8 74.1 70.3 68.9 58.6 57.1 46.8 49.5 84.4 73.3 62.1

VAT [6] 56.5 37.8 73.0 38.7 50.9 58.2 40.8 70.5 20.4 72.6 61.1 57.8 45.6 48.1 52.4 39.7 77.7 71.4 54.2

VAT‡ 58.6 47.8 83.2 45.6 52.4 67.1 61.4 73.4 30.2 76.5 67.7 66.9 48.0 53.3 46.6 44.3 84.6 60.7 59.0
ACTRh 64.9 54.8 87.6 49.2 55.7 74.4 66.5 80.7 35.3 82.1 75.2 71.9 54.0 62.4 54.9 53.5 88.7 71.0 65.4

Compared with the TransforMatcher [16] with the same
iBOT-B backbone as ACTR, our method also gets im-
provements by {1.1%, 1.3%, 6.3%, 3.5%}. Our ACTRh

also shows an overall improvement compared with previ-
ous works and their iBOT-B feature backbone extension.

2.2. Parameters in Different Modules of ACTR

Here we provide statistics of learnable parameters for
each module of ACTR. The feature backbone and asym-
metric feature learning module overtake more than 98% of
total parameters. While the correlation calculation (includ-
ing generating matching flow) and matching flow superres-
olution only contain 1.8M and 0.76M learnable parameters
respectively. Since the matching flow superresolution mod-
ule can upscale a flow with low computation cost, ACTR
can establish accurate correspondence in higher resolutions.

Table 3. Parameters of ACTR Components. Here we provide both
the amount of learnable parameters and the proportion of parame-
ters for a module in the entire model.

Structure Param(M) Percentage

Backbone 85.0 49.3%
Asymmetric Feature Learning 84.44 49.2%
Correlation Calculation 1.8 1.1%
Matching Flow Super-Resolution 0.76 0.4%

Total 172.8 100%

2.3. Evaluation of ACTR on MAE & DINO

We replaced iBOT ImageNet 1K pre-trained weights
with that of MAE [5], DINO [2]. Results show that MAE
and DINO also perform well with 61.2% and 54.0% of
PCK@0.1 respectively. It indicates that self-supervised
learning techniques with masked image modeling can help
to learn semantic correspondences since they focus on local

image patch modeling. We compared the differences among
IBOT [17], DINO [2] and MAE [5]. DINO performs local-
global contrastive learning that can provide scale-variant ro-
bust features. While MAE utilizes masked image modeling
that can extract consistent features despite severe occlusion.
iBOT exploits both contrastive learning and masked image
modeling and thus gets better performance.

2.4. Further Ablations on ACTR

We provide more ablation results for micro designs in the
matching flow superresolution module on Table 4. Exper-
iments are conducted on ACTR (ImageNet 1K, resolution
256 × 256). First, we replaced the multi-path superreso-
lution with a single-path superresolution by only exploit-
ing the coarse matching flow only in the last cross-attention
block. It can be found that the results drop from 62.1%
to 61.0%. It indicates that the matching flows in different
branches can provide complementary information for accu-
rate semantic matching. Second, we checked whether trans-
former blocks with different window attention are necessary
for flow superresolution. When the 4× 4 window attention
branch was removed, the performance dropped by 1.5%.
When the 8 × 8 window attention branch was removed,
the performance dropped by 1.3%. These results show
that more diversities in transformer blocks will improve the
matching accuracy. Finally, we removed the matching flow
superresolution module and upscaled the coarse matching
flow through a bilinear interpolation sampler, and found
that the performance dropped to 59.0%. These results in-
dicate that all the designs in the matching flow superresolu-
tion module are important to get good results.

Besides, we clarified the ablation for ’w/o dual window
flow refinement’ in ablation table for main paper. In main
paper, we removed the 4 × 4 path and the performance
dropped for 1.5%. Here we conduct experiment with the
8×8 path removed, the performance dropped for 1.3%. The
result shows that the both path contribute to final perfor-



Table 4. Further ablations on micro designs in the matching flow
superresolution module.

Methods SPair-71K
αbbox = 0.1

ACTR 62.1

w/o multi-path superresolution 61.0 (1.1↓)
w/o 4× 4 branch 60.6 (1.5↓)
w/o 8× 8 branch 60.8 (1.3↓)
w/o flow super-resolution 59.0 (3.1↓)

Baseline 57.7 (4.4↓)

mance. We also conduct experiment on correlation map cal-
culation, we compared the multi-head attention with inner-
production and single-head attention. Compared with our
design, their performance drops by 0.6% and 3.7%. We be-
lieve this is because multi-head attention allows the model
to focus on different aspects of information [14].

3. Additional Visualization
We provide more visualization results in Figure 1-11.

Figure 1-6 visualize the matched key points, and Figure 7
and 8 provide an more comprehensive comparison by wrap-
ping images through TPS [1]. We also provide more visu-
alization results for outputs produced by different superres-
olution paths in Figure 9-11. We further clarify that the
design of multi-path fusion can take advantage of each path
and achieve better performance.
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Figure 1. Visual comparison of matched key points. From left to right: (a) SCOT [10], (b) CATs [3], (c) MMNet [16], (d) ours ACTR
and (e) the ground truth. Source and target images are in odd and even rows respectively. Crosses denote destination key points on target
images.



Figure 2. Visual comparison of matched key points. From left to right: (a) SCOT [10], (b) CATs [3], (c) MMNet [16], (d) ours ACTR
and (e) the ground truth. Source and target images are in odd and even rows respectively. Crosses denote destination key points on target
images.



Figure 3. Visual comparison of matched key points. From left to right: (a) SCOT [10], (b) CATs [3], (c) MMNet [16], (d) ours ACTR
and (e) the ground truth. Source and target images are in odd and even rows respectively. Crosses denote destination key points on target
images.



Figure 4. Visual comparison of matched key points. From left to right: (a) SCOT [10], (b) CATs [3], (c) MMNet [16], (d) ours ACTR
and (e) the ground truth. Source and target images are in odd and even rows respectively. Crosses denote destination key points on target
images.



Figure 5. Visual comparison of matched key points. From left to right: (a) SCOT [10], (b) CATs [3], (c) MMNet [16], (d) ours ACTR
and (e) the ground truth. Source and target images are in odd and even rows respectively. Crosses denote destination key points on target
images.



Figure 6. Visual comparison of matched key points. From left to right: (a) SCOT [10], (b) CATs [3], (c) MMNet [16], (d) ours ACTR
and (e) the ground truth. Source and target images are in odd and even rows respectively. Crosses denote destination key points on target
images.



Figure 7. Dense visual correspondence generated by state-of-the-art algorithms, including SCOT [10], CATs [3], MMNet [16] and our
ACTR. Images are warped with predicted key points using thin-plate splines algorithm [1].



Figure 8. Dense visual correspondence generated by state-of-the-art algorithms, including SCOT [10], CATs [3], MMNet [16] and our
ACTR. Images are warped with predicted key points using thin-plate splines algorithm [1].



Figure 9. Matching results of different paths. From left to right, raw image pairs (a), matching results from path 1-6 (b-g), the output
after multi-path fusion (h), and ground truth (i) are given.



Figure 10. Matching results of different paths. From left to right, raw image pairs (a), matching results from path 1-6 (b-g), the output
after multi-path fusion (h), and ground truth (i) are given.



Figure 11. Matching results of different paths. From left to right, raw image pairs (a), matching results from path 1-6 (b-g), the output
after multi-path fusion (h), and ground truth (i) are given.
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