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1. Details of Loss Function
During our two-round training phase, Lr should be

specifically adapted with slight changes for fair comparison
with original baselines [1, 5, 7].

On Human3.6M [2], the prediction loss of LTD-DeFee
for round r (r = 1, 2) is expressed as:

Lr(LTD-DeFee) =
1

J(N + T )

N+T∑
t=1

J∑
j=1

‖p̂r,(t,j) − pr,(t,j)‖2,

(1)
where p̂r,(t,j) ∈ R3 denotes the predicted jth joint position
of frame t in round r, and pr,(t,j) the corresponding ground
truth, with J the number of human skeletal joints. We also,
like [5], predict on both observed part and target part, and
sum L2 errors on the N + T region.

For STS-DeFee, the prediction loss for round r is:

Lr(STS-DeFee) =
1

J × T

T∑
t=1

J∑
j=1

‖p̂r,(t,j) − pr,(t,j)‖2, (2)

where p̂r,(t,j) and pr,(t,j) share the same notation meanings
as in Eq. 1. Prediction and error calculation are only on the
T region like [7].

The per-round prediction loss of MotMix-DeFee is for-
mulated as:

Lr(MotMix-DeFee) =
1

J × T

T∑
t=1

J∑
j=1

‖v(p̂r,(t,j))−v(pr,(t,j))‖2,

(3)
where p̂r,(t,j) and pr,(t,j) have the same notation meanings
as in Eq. 1. v(·) denotes the joint position displacement be-
tween two adjacent frames, as [1] predicts future displace-
ment rather than position, i.e., velocity prediction strategy.

On BABEL [6], we refer to [4] to calculate MSE be-
tween the predicted pose parameter vector of RK and the
corresponding ground truth. The per-round prediction loss
at round r (r = 1, 2) for LTD-DeFee, STS-DeFee and

MotMix-DeFee are

Lr(LTD-DeFee) =
1

N + T

N+T∑
t=1

‖ŷr,t − yr,t‖22, (4)

Lr(STS-DeFee) =
1

T

T∑
t=1

‖ŷr,t − yr,t‖22, (5)

and

Lr(MotMix-DeFee) =
1

T

T∑
t=1

‖v(ŷr,t)− v(yr,t)‖22, (6)

with ŷr,t ∈ RK as the prediction at frame t at round r, and
yr,t the corresponding ground truth.

2. Implementation Details

Human3.6M BABEL

LTD-DeFee
dev in [batch size,9,66] [batch size,9,60]

dev out [batch size,66,256] [batch size,60,256]

STS-DeFee
dev in [batch size,3,9,22] [batch size,3,9,20]

dev out [batch size,3,10,22] [batch size,3,10,20]

MotMix-DeFee
dev in [batch size,9,66] [batch size,9,60]

dev out [batch size,10,50] [batch size,10,50]

Table 1. Detailed input/output feature size of DeFeeNet on differ-
ent baselines and different datasets.

In Table 1, we provide the detailed feature size of De-
FeeNet when inserted into different baselines and on differ-
ent datasets. dev in and dev out denote the prediction devi-
ation (i.e., the input of DeFeeNet) and the latent deviation
representation (i.e., the output of DeFeeNet). Specifically,
as we set T = 10 in our experiments, the temporal dimen-
sion of the velocity-based deviation is 9. The spatial dimen-
sion is 66 (or [3, :, 22]) on Human3.6M and 60 (or [3, :,
20]) on BABEL. Our MLP-based DeFeeNet only increases
parameter numbers of the original [1, 5, 7] by 12.2%, 5.2%
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Figure 1. Influence of weight changing on Ltotal. Dark grey original in both figure represent directly using baselines to implement multi-
round prediction. 1 : x represent the weight ratio between λ1 and λ2. When λ1 : λ2 = 1 : 1, our multi-round prediction stably produce
lower errors than baselines. Left: Baseline LTD-GCN added with DeFee(MLP) on Human3.6M. Per-round prediction error is calculated
by averaging the errors of predicted frame 2, 4, 8, 10. Right: Baseline STS-GCN added with DeFee(GRU) on BABEL w/ transi, with
per-round prediction error calculated by averaging the errors on frame 3, 6, 8, 10.

and 11.8%, respectively; our GRU-based version increase
only about 0.29M parameters for three baselines.

Running Time Analysis. On RTX 1080Ti, for 10-round
prediction on Human3.6M test set, LTD-GCN costs 94.93s,
with MLP-based DeFeeNet 103.33s, and with GRU-based
DeFeeNet 101.63s; for 5-round prediction on BABEL test
set, STS-GCN costs 4.548s, with MLP-based DeFeeNet
4.943s, and with GRU-based DeFeeNet 4.886s. Our frame-
work could compensate a small amount of computation
time (7%∼9%) for prediction accuracy improvement.

Hyperparameter Setting. For the two-round training,
we set both the hyperparameter in

Ltotal = λ1L1 + λ2L2 (7)

to 1, as the prediction accuracy of both rounds are of equal
importance. Here we analyze the influence of weight chang-
ing by adjusting the relative weight of λ1 and λ2.

From Figure 1, our consecutive motion prediction stably
yield lower errors than baselines when λ1 : λ2 = 1 : 1.
When we put heavier weight on L2 (during training) in the
attempt to increase the importance of deviation feedback
learning, the multi-round testing performance, on the con-
trary, get worser results. In fact, to keep the accuracy of
round 1 prediction is crucial. For one thing, the low-quality
prediction in round 1 brings about low-quality deviation
feedback between adjacent rounds, which may harm the fol-
lowing deviation-aware prediction round by round; for an-
other, the heavy weight on L2 forces the baseline part more
dependent on DeFeeNet (i.e., losing their original ability to
predict solely), and therefore when DeFeeNet is nonacti-
vated in round 1, the prediction error becomes even higher
than the sole baseline, which is not our intention.

3. Experimental Details
3.1. BABEL Dataset Preprocessing

Based on the preprocessed BABEL [6] dataset file pro-
vided in [4] with 20 action categories, we remove categories
with small sequence number and leave 11 actions (for ex-
ample, action hop in [4] with only 58 sequences is removed
in our task). (a) For isolated motion prediction task, we ran-
domly cut two “observe then predict” units from each se-
quence in each action, as training/testing samples. (b) For
consecutive motion prediction, we randomly cut two groups
of two-round training/testing samples from each sequence
in each action. To validate the improvement stability of our
DeFeeNet, we randomly cut one group of five-round struc-
ture from each sequence in each action.

original two-round five-round

w/o transi transi w/transi w/o transi transi w/transi w/o transi transi w/transi

train 17370 3544 20914 8485 1772 10257 - - -

test 6172 1212 7384 3029 606 3635 1376 606 1982

Table 2. Detailed dataset sample numbers on BABEL after our
preprocessing. To train original baselines on BABEL, we arrange
samples as current isolated-unit structure. To realize consecutive
motion prediction, we need two-round sample structure for de-
viation learning and effectiveness validation. Five-round testing
samples are for stability validation. Note that num(w/ transi) =
num(w/o transi) + num(transi).

When choosing group numbers mentioned above, we
fully consider two issues: (i) Some sequences are too short
to cover the two-round structure; (ii) The random seeds are
required to ensure that samples cut from sequences should
cover their transition periods if there exist any. As shown



in Table 2, the numbers of sequences in original are about
twice as large as numbers in two-round. In other words, the
amount of data used to train the original unit-based base-
lines and the two-round baseline-DeFee structures is almost
the same, which allows for fair comparison.

3.2. More Experiments on AMASS and 3DPW

We additionally provide experimental comparisons be-
tween LTD-GCN and ours on AMASS [3] and 3DPW [8].
From Table 3, our DeFeeNet is also effective on these two
datasets.

AMASS 3DPW

LTD-GCN [5] 27.70 29.78

-D(MLP) -D(GRU) -D(MLP) -D(GRU)

r1 27.58 27.77 29.61 29.88

r2 25.86 26.11 27.52 27.90
r3 26.02 25.74 27.85 27.48
r4 25.46 25.61 27.76 27.59
r5 25.88 25.90 27.62 28.12

Table 3. Comparisons between LTD-GCN w/o and w/ DeFeeNet
inserted. Results are average prediction errors at frame 2, 4, 8, 10.
DeFeeNet is abbreviated as D. Bold values indicate lower errors.

3.3. Velocity-Based Vs. Position-Based Deviation
Representation

To evaluate the superiority of our velocity-based pre-
diction deviation, we change our D(v)

r−1 = v(xr,N−T :N ) −
v(ŷr−1,1:T ) ∈ RK×(T−1) into the position-based represen-
tation:

D(p)
r−1 = xr,N−T :N − ŷr−1,1:T ∈ RK×T , (8)

and feed this representation into DeFeeNet to analyze the
corresponding consecutive prediction performance (shown
in Table 4 and 5).

LTD-GCN [5] STS-GCN [7] MotionMixer [1]

isolated 38.64 41.16 35.52

-D(MLP) -D(GRU) -D(MLP) -D(GRU) -D(MLP) -D(GRU)

velocity-based 35.52 35.98 38.63 39.06 32.49 32.87
position-based 36.48 36.21 39.12 39.88 33.86 33.73

Table 4. Comparisons of average prediction errors at round 2 to
10 on Human3.6M when baseline-DeFee are fed with velocity-
based and position-based deviation (per-round error is calculated
by averaging the errors on frame 2, 4, 8, 10).

From the tables, both velocity-based and position-
based representations are valid for deviation feedback, but
velocity-based version produce lower errors. Compared to
position-based representation that considers the general ap-
pearance of human poses, our velocity-based deviation al-
lows for more focus on motion status and the body parts that

LTD-GCN [5] STS-GCN [7] MotionMixer [1]

isolated 0.4221 0.4673 0.3925

-D(MLP) -D(GRU) -D(MLP) -D(GRU) -D(MLP) -D(GRU)

velocity-based 0.3879 0.3869 0.4247 0.4195 0.3560 0.3591
position-based 0.3897 0.3888 0.4301 0.4226 0.3610 0.3622

Table 5. Comparisons of average prediction errors at round 2 to 5
on BABEL (w/ transi) when baseline-DeFee are fed with velocity-
based and position-based deviation (per-round error is calculated
by averaging the errors on frame 3, 6, 8, 10).

are prone to error, which benefits DeFeeNet that may con-
front multiple factors of prediction deviation such as pre-
diction not in place or action status changing.

3.4. Ablation about Deviation Feedback

To further demonstrate the effectiveness of deviation
feedback, we provide performance comparison between de-
viation feedback enabled and disabled in Table 6, where
prediction errors cannot be obviously reduced when devi-
ation is disabled. The corresponding visualized comparison
is also given in Figure 2.

round dev 8 dev round dev 8 dev

r1 37.31 37.31

r2 37.27 35.21
r1 0.4385 0.4385

r3 37.23 35.44
r4 37.19 35.33

r2 0.4383 0.4265

r5 37.15 35.31
r6 37.14 35.30

r3 0.4382 0.4189

r7 37.13 35.29
r8 37.16 35.31

r4 0.4380 0.4192

r9 37.18 35.33

LT
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r10 37.22 35.35
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L
r5 0.4381 0.4133

Table 6. When deviation feedback is disabled (8), prediction er-
rors cannot be obviously reduced.

3.6 sec.2.0 sec.
walking together

w/
DeFeeNet

DeFeeNet
disabled

Figure 2. Visualized comparison between DeFeeNet disabled dur-
ing testing vs. DeFeeNet enabled. Errors marked in red boxes are
alleviated when DeFeeNet enabled (marked in green).

3.5. Passing GT as Deviation into DeFeeNet

To ensure that the baseline completely mirrors the
DeFeeNet-inserted architecture, we pass GT observation as
deviation to DeFeeNet. Results in Table 7 indicate that such



operation has no obvious improvement on prediction accu-
racy, and that is why we are motivated to use past deviation.
Compared to GT observation, the past deviation could re-
flect the mistake that the model has made before, i.e., con-
taining error information that just happened, where our De-
FeeNet can learn to derive certain “patterns” from it and
then constrain the model to make better predictions.

LTD-GCN [5] on H3.6M STS-GCN [7] on BABEL w/transi

38.64 0.4673

passing GT observation into DeFeeNet
-D(MLP) -D(GRU) -D(MLP) -D(GRU)

38.30 38.45 0.4629 0.4648

Table 7. Passing GT observation as deviation into DeFeeNet.

3.6. Stretching the Length of Observation

Since the accuracy improvement produced by our
deviation-aware prediction is essentially due to the intro-
duction of additional information outside the current unit
(i.e., deviation feedback from the previous adjacent one),
there might be concerns whether the same effect could be
achieved if we simply stretch the observed length to intro-
duce more information for prediction (see Figure 3).

We conduct an ablation study as follows. We stretch the
observed length toN+T , which is of the same length as the
prediction round in our consecutive motion prediction task,
and construct each sample with N + T poses observed and
T poses to be predicted. We re-train baselines using such
(N+2T )-pose sequence samples (isolated unit-based), and
test them round by round. Note that, during testing phase,
each round of prediction is produced given only the corre-
sponding observation with no deviation involved.

observation    prediction

observation    prediction

observation    prediction

deviation
round 1

round 2

round 3

ꞏꞏꞏ

observation    prediction

entire sequence

observation               prediction

observation             prediction

round 1 (discard)

round 2

round 3

ꞏꞏꞏ

deviation-aware

observation 
stretching

Figure 3. Frameworks of deviation-aware prediction and observa-
tion stretching.

From Table 8, the re-trained baselines do not enjoy ac-
curacy advantage. The reason lies in that blindly extend-
ing the observation length may not bring significant im-
provement in the prediction performance. Instead of solely,
evenly exploit global information from historical window,
with the help of our DeFeeNet, the existing predictor could

Human3.6M BABEL w/ transi

frame num. 2 4 8 10 frame num. 3 6 8 10

LTD-GCN (obs=10) 12.69 26.06 52.28 63.53 STS-GCN (obs=10) 0.24 0.43 0.55 0.64

LTD-D(MLP) (obs=10) 10.38 22.68 48.29 59.92 STS-D(GRU) (obs=10) 0.23 0.39 0.49 0.58
LTD-GCN (obs=20) 12.21 26.24 52.79 64.02 STS-GCN (obs=20) 0.23 0.44 0.56 0.65

Table 8. Comparisons of prediction errors between original base-
lines [5, 7], Baseline-DeFee and baselines re-trained with stretch-
ing observation length on Human3.6M and BABEL w/ transi. Val-
ues in bold indicate lower errors. For Baseline-DeFee marked in
purple background color, errors in Human3.6M is the average of
round 2 to 10 prediction errors, while in BABEL the average of
round 2 to 5 prediction errors.

focus more on local information (i.e., newly detected devi-
ation), and therefore more sensitive to prediction parts that
are prone to error, such as action status changing period that
just began to happen. That is also why we set the prediction
length to 10 but not longer, as too long the predicted se-
quence is not conducive to generate the deviation feedback
that is sufficiently effective yet easy to capture.

3.7. More Visualized Results

More visualizations are in Figure 4 and 5 (next page).
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Figure 4. Top: Visualization of a sample eating in Human3.6M. Dashed lines indicate observation/GT. Prediction errors highlighted in red
boxes are alleviated by our deviation-aware prediction (highlighted in green boxes).
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Figure 5. Top: Visualization of a sample from walk to take pick something up in BABEL. Bottom: Visualization of a sample from take pick
something up to place something in BABEL. Grey poses represent observation/GT. Prediction errors highlighted in red boxes are alleviated
by our deviation-aware prediction (highlighted in green boxes).
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