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1. Human Memory Mechanism

The classic Atkinson-Shiffrin human memory model [22]
assumes that human memory consists of three separate mem-
ory stores: sensory memory, short-term memory, and long-
term memory. They play different roles in human learning.
The sensory memory is responsible for caching the envi-
ronmental stimuli captured by sense organs, such as visual
signals inputted by eyes. Most of the cached signals decay
rapidly unless they attract the attention of the brain. Such
signals are then transferred to the short-term memory. The
short-term memory has a larger capacity and a longer storage
duration, which allows it to process the signals into informa-
tion to facilitate human decision-making and behavior. Then,
the brain utilizes a rehearsal process to re-organize impor-
tant information into compact representations, which can be
viewed as knowledge and will be carried to the long-term
memory for storing. The long-term memory has the largest
capacity and the longest storage duration, where the stored
knowledge can be recalled back to the short-term memory
as the brain need.

Remarkably, recent studies [7, 1 7] suggest that the re-
hearsal process can be viewed as a self-organization process
which is detailed as follows. The brain first tries to represent
raw information (from the short-term memory) by utilizing
old patterns (stored in the long-term memory) which have
been built previously. If the old patterns can represent the
raw information well, then the “representation coefficients”
instead of the raw information are transferred to the long-
term memory for storing. Otherwise, some new patterns will
be built from the raw information; the new patterns together
with the old patterns are utilized to represent the raw infor-
mation; then the “representation coefficients” along with the
new patterns are transferred to the long-term memory for
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storing. All the above steps follow the principle of minimum
energy consumption.

The memory mechanism and rehearsal process above
make human beings good at learning new knowledge incre-
mentally.

2. Experimental Details
2.1. Experimental Environment

All experiments reported in the manuscript and appendix
are conducted on a workstation running OS Ubuntu 16.04
with 18 Intel Xeon 2.60GHz CPUs, 256 GB memory, and 6
NVIDIA RTX3090 GPUs.

2.2. List of Hyperparameters

We summarize the hyperparameters for each method used
in experiments in Table 1.

2.3. Dataset Statistics

In this work, we select three classification datasets to
evaluate the proposed BMKP method. We list the statistical
information of these three datasets in Table 2.

3. Implementation Details
3.1. Knowledge Projection for Convolution layer

In the paper, we introduce the process of knowledge pro-
jection on linear layers, which can be easily generalized to
the convolution layers. Specifically, the convolution layer
can be transformed into a special case of the fully connected
layer [19]. Let ¢; X h; X w;, ¢, X ¢; X kX k and ¢, X hy, X w, be
the sizes of the input image (or feature map), the convolution
kernel and the output feature map, respectively (w;, h;, and
c¢; donate the width, height, and channel of the input tensor
X, respectively; w,, h,, and c, donate the width, height,



Table 1. List of hyperparameters for the baselines and our BMKP. Here, KD’ represents "Knowledge distillation".

Methods Hyperparameters

learning rate: 0.01
batch size: 32
tempture: 2

KD weight: 5e-4

learning rate: 0.03 (CIFAR-10), 0.1 (CIFAR-100), 0.05 (Tiny-ImageNet)
SI[31] batch size: 16
regularizer weight: 0.5

learning rate: 0.1 (CIFAR-10), 0.05 (CIFAR-100)
DGR [21] batch size: 64 (CIFAR-10), 128 (CIFAR-100)
KD weight: 0.1 (CIFAR-10), 1 (CIFAR-100)

learning rate: 0.03 (CIFAR-10, CIFAR-100), 0.05 (Tiny-ImageNet)
batch size: 32 (CIFAR-10, CIFAR-100), 64 (Tiny-ImageNet)

learning rate: 0.03 (CIFAR-10, CIFAR-100), 0.2 (Tiny-ImageNet)
oEWC [20] batch size: 32 (CIFAR-10, CIFAR-100), 16 (Tiny-ImageNet)
regularizer weight: 10 (CIFAR-10), 5 (CIFAR-100), 25 (Tiny-ImageNet)

learning rate: 0.03 (CIFAR-10), 0.01 (CIFAR-100), 0.5 (Tiny-ImageNet)
batch size: 32 (CIFAR-10, CIFAR-100), 16 (Tiny-ImageNet)

KD weight: 1 (CIFAR-10, CIFAR-100), 0.5 (Tiny-ImageNet)

grad cam distillation weight: 1

learning rate: 0.005 (CIFAR-10), 0.05 (CIFAR-100), 0.1 (Tiny-ImageNet)

DI [27] batch size: 32 (CIFAR-10, CIFAR-100), 16 (Tiny-ImageNet)
KD weight: 0.5 (CIFAR-10, CIFAR-100), 5 (Tiny-ImageNet)

LwF [12]

GEM [14]

LwM [8]

learning rate: 0.03
DER [3] batch size: 32
KD weight: 0.3 (CIFAR-10), 0.1 (CIFAR-100, Tiny-ImageNet)

learning rate: 0.03 (CIFAR-10), 0.05 (CIFAR-100)

HAL [4] batch size: 32

learning rate: le-4 (CIFAR-10, Tiny-ImageNet), 5e-4 (CIFAR-100)
PASS [37] batch size: 64 (CIFAR-10, CIFAR-100), 32 (Tiny-ImageNet)

KD weight: 10 (CIFAR-10, Tiny-ImageNet), 0.2 (CIFAR-100)

prototype weight: 0.2 (CIFAR-10), 0.05 (CIFAR-100), 0.5 (Tiny-ImageNet)
GPM [19] learning rate: 0.02 (CIFAR-10), 0.01 (CIFAR-100), 0.02 (Tiny-ImageNet)

batch size: 64 (CIFAR-10, CIFAR-100), 32 (Tiny-ImageNet)

learning rate: le-5 (CIFAR-10), le-4 (CIFAR-100), 5e-5 (Tiny-ImageNet)
batch size: 32 (CIFAR-10, CIFAR-100), 16 (Tiny-ImageNet)

learning rate: 0.1 (CIFAR-10, CIFAR-100), 0.05 (Tiny-ImageNet)
batch size: 32

learning rate: 0.05 (CIFAR-10, CIFAR-100), 0.03 (Tiny-ImageNet)
BMKP (ours) batch size: 128
regularizer weight: 1 (CIFAR-100), 10 (CIFAR-10, Tiny-ImageNet)

Adam-NSCL [23]

CLS-ER [2]

and channel of the output tensor, respectively, and k denotes convolution process can be reformulated as a product of
the size of convolution kernel). As shown in Figure 1, the two matrices with the sizes of (h, - w,) X (¢; - k - k) and



Table 2. Dataset statistics.

Dataset ‘ Split CIFAR-10  Split CIFAR-100 Split Tiny-ImageNet
num. of tasks 5 10 10
input size 3 x 32 x 32 3% 32 x 32 3 %64 x 64
# Classes/task 2 10 20
# Training samples/task 9,000 4,500 9000
# Validation samples/task 1,000 500 1000
# Test samples/task 2,000 1,000 1000
Input X Convolution kernel Output
G wi wo
—ya
convolution
operation
in matrix
multiplication
format ‘o
o
hg X wo cjxkxk hy X W
Input X Convolution kernel Output

Figure 1. Diagram of convolution operation in matrix multiplication format. w;, h;, and c; donate the width, height, and channel of the input
tensor X, respectively; wo, ho, and ¢, donate the width, height, and channel of the output tensor, respectively, and k denotes the size of

convolution kernel.

(¢;-k-k) X c,. With the above transformation, we can perform
the knowledge projection on the generated (h,-w, ) X (¢;-k-k)
matrix.

3.2. Network Parameter Composing

During incremental learning, the dimension of pattern
basis B increases as the number of learned tasks. However,
the previously learned A; will not change, which can incur
the dimension mismatching problem between B and A;. To
handle this issue, the expansion of B is constrained to be
strictly incremental, meaning that the previously learned
basis in B keeps unchanging when adding new basis into
B. To be more specific, as shown in Figure 2, take layer [
as an example, the first m’ row of B! are exactly the basis
after learning the first ¢ tasks. Thus, during working memory
parameter composing, BMKP clip the superfluous basis in
B! and then multiplies A% with it to obtain the composed
parameter /. With this design, the previously learned A;

is still applicable to the expanded B.

4. The Influence of Basis on Each Task

We next analyze how each basis affects each task. To
this end, we calculated the weight of last layer knowledge
representations of all tasks {AF, AL ... AL} on all basis
and presented it in a heat map in Figure 3. As can be seen, all
basis contribute to all subsequent tasks. Moreover, weights
on the new basis are smaller than on the old, showing that
BMKP tends to reuse the shared knowledge.

5. Additional Experiments
5.1. The Computational Efficiency of BMKP

Compared with the baseline methods, BMKP has two
additional steps: the knowledge projection and the long-
term memory updating, which may incur more computation
consumption. Nevertheless, we will show the computation
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Figure 2. Diagram about how to “multiply” the pattern basis B' € RPt+1 xm/ by the knowledge representation A} € R™*P! to get the
network parameter W} € RP1+1%Pt m/ and m (m’ < m) denote the number of basis after learning the first ¢ tasks and learning all the
tasks, respectively. p; and p;41 represent the number of neurons in the network layer [ and [ + 1, respectively.

Table 3. Time consumption (second) in last incremental task.

Methods ‘ Split CIFAR-10  Split CIFAR-100 Split Tiny-ImageNet
GPM [19] training 389 390 1155
DER++ [3] training 1450 1457 6073
Working memory learning 373 402 1192
Knowledge projection 38 39 180
Long-term memory updating 72 72 108

BMKP (ours) training 483 513 1480

GPM [19] testing 4.1 4.1 4.9

DER++ [3] testing 4.5 4.5 4.7

BMKEP (ours) testing 4.3 4.5 5.2
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Figure 3. Diagram of the contribution of each basis for the last
layer knowledge representation of all tasks.

complexity of these two steps is acceptable.

During the knowledge projection step, the major computa-
tional overhead stems from the singular value decomposition
(SVD), which incurs a O( HW?) computational cost for a
H x W matrix (assuming H > W without loss of gener-
ality) [19]. Specifically for our convolution scenario, let
c; X h; X w;, ¢, X ¢; Xk xkand ¢, X h, X w, be the sizes of
the input image (or feature map), the convolution kernel and
the output feature map, respectively. As shown in Figure 1,
the convolution process can be reformulated as a product
of two matrices with the sizes of (h, - w,) X (¢; - k - k)
and (¢; - k - k) X ¢,. With this transformation, what the
SVD applying on is actually a (h, - w,) X (¢; - k - k) matrix
G.e., H = h,-w, and W = ¢; - k - k,), which cause a
O ((ho - wo) % (c; - k - k)?) computational cost. Therefore
the total computational overhead of the knowledge projec-
tion step is > O ((ho - wo) X (¢; - k - k)?), where the sum-
mation is taken over all the network layers. As the kernel
side k is usually small enough (e.g., 3 in our case), the com-
putational consumption of the knowledge projection step is
generally acceptable.

For the long-term memory updating step, retraining the



knowledge representation A will take up additional time.
However, since this step is only used for fine-tuning, we nor-
mally take a small number of iteration epochs. Besides, the
parameter that requires gradient update is smaller (the size
of A is smaller than that of the original network parameter
W), which also saves some time.

Table 3 reports the time consumption of each stage in
BMKEP. As can be seen, the knowledge projection and the
long-term memory updating step take much lesser time com-
pared with the working memory learning stage. Conse-
quently, the total time consumption of BMKP is acceptable.

As for the inference, BMKP needs to re-build the working
memory parameters according to the task label, which indeed
incurs extra time costs. Nevertheless, the bottom part of
Table 3 empirically suggests that the inference speed of
BMKRP is still competitive compared with the two baselines.

5.2. Results using Larger Backbone

We carried out experiments with ResNet34 [10] as the

network backbone, and report the result in Table 4.

Table 4. Result (ACC %) with ResNet34 as the network backbone.

Methods ‘ Split CIFAR-10 Split CIFAR-100

GPM 84.96 66.14
BMKP 93.58 71.2

5.3. Comparison with Mask-based methods

Following SparCL, we carried out experiments on CIFAR-
10 and Tiny-ImageNet, and the results are reported in Table 5.
The compared mask-based methods include PackNet [15],
LPS [24], and SparCL [25]. Notably, SparCL also keeps an
exemplar memory with 500 samples. As can be seen, BMKP
has a similar performance to SparCl on the easier CIFAR10
tasks. Besides, in the more challenging Tiny-ImageNet,
BMKP performs much better than all comparison methods.
Notably, the performance of BMKP is much more stable
than others, with the lowest variance.

Table 5. Comparison result (ACC %) with with Mask-based meth-
ods on CIFAR-10 and Tiny-ImageNet experiments. Results with
(1) stem from SparCL [25].

Methods | Split CIFAR-10  Split Tiny-ImageNet

PackNet' 93.73+0.6 61.88+1.0
LPST 94.50+0.5 63.37£0.8
SparCLf 95.194+0.3 52.19+04
BMKP 94.49+0.2 70.36+0.2

Table 6. Comparison with expansion-based methods on 20-split-
CIFAR-100 Superclass dataset. (1) and (1) denote the result re-
ported from APD [28] and GPM [19], respectively. (¥) indicates
the methods that do not adhere to Task-IL setup. Single-task learn-
ing (STL) trains a separate network for each task and serves as an
upper bound of Task-IL methods.

Methods | ACC (%) | Capacity (%)
STL*t | 61.00 | 2000
PNNT 50.76 271
DENT 51.10 191
RCL 51.99 184
APD 56.81 130
GPM# 57.72 100
BMKP(ours) 57.82 100

Table 7. Comparison results (ACC %) on 20-split CIFAR-100
and 25-split Tiny-ImageNet. Results with () stem from Adam-
NSCL [23].

20-split 25-split Tiny-

Methods CIFAR-100 ImageNet
EwcCt 71.66 52.33
MAST 63.84 47.96
MUC-MAS' 67.22 41.18
SIt 59.76 45.27
LWF1 74.38 56.57
InstAParam? 51.04 34.64
GD-WILD? 77.16 42.74
GEM' 68.89 -
A-GEMT 61.91 53.32
MEGA' 64.98 57.12
oOwM' 68.47 49.98
Adam-NSCL' 75.95 58.28
GPM 77.55 68.62
BMKP (ours) | 85.81 | 80.01

5.4. Comparison with Expansion-based Methods

Following Additive Parameter Decomposition (APD)
[28], we carry out experiments on 20-split-CIFAR-100 Su-
perclass dataset. The compared expansion-based methods
include Single Task Learning (STL), Progressive Neural
Network (PNN) [18], Dynamically Expandable Networks
(DEN) [29], Reinforced Continual Learning (RCL) [26],
APD [28]. Notably, STL is the upper bound of Task-IL
methods since it trains a separate network for each task. Be-
sides, we also compare BMKP with a memory-based method
GPM [19]. In this experiment, all methods and BMKP use
the LeNet-5 as the network backbone, and we report the
classification accuracy over all learned tasks and the net-



Table 8. Diagram of memory usage (MB) of each components in BMKP during incremental learning on CIFAR100.

Task No. 1 >
Methods

4 5 6 7 8 9 10

Adam-NSCL [23]
GPM [19]

38.42 38.42 38.42 38.42 38.42 38.42 38.42 38.42 38.42 38.42
21.09 27.61 29.94 31.18 31.57 31.74 31.83 31.83 32.08 32.10

Pattern Basis

0.31 035 036 036 036 0.36 037 037 037 0.37

Knowledge Representations| 2.26 4.84 7.46 10.12 12.80 15.49 18.19 20.90 23.62 26.34

BMKP

2.57 5.19 7.82 10.48 13.16 15.85 18.56 21.27 23.99 26.71
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Figure 4. Diagram of ACC (%) of each task during incremental learning on CIFAR-100.

work capacity compared with the standard LeNet-5. The
results are reported in Table 6, both BMKP and GPM are
memory-based methods and do not expand network capac-
ity. Besides, BMKP achieves the best performance with an
average accuracy of 57.82% with fixed network capacity.

5.5. Comparison with More Tasks

This section evaluates the performance of BMKP with a
longer sequence of tasks. Following Adam-NSCL, we con-
duct experiments on 20-split CIFAR-100 and 25-split Tiny-
ImageNet, where 20-split CIFAR-100 is constructed by split-
ting CIFAR-100 into 20 tasks, and 25-split-TinyImageNet
is constructed by splitting Tiny-ImageNet into 25 tasks.
The comparison methods in this experiment include Elastic
Weight Consolidation (EWC) [1 1], Memory Aware Synapses
(MAS) [1], MUC-MAS [13], Synaptic Intelligence (SI) [31],
Learning without Forgetting (LwF) [12], InstAParam [6],
GD-WILD [16], A-GEM [5], MEGA [9], OWM [30], and
Adam-NSCL [23]. Table 7 reports the comparison results.
On 20-split CIFAR-100, our method achieves the best accu-
racy of 85.81%, which is 8.26% higher than the second-best
performance. As for the 25-split Tiny-ImageNet, BMKP
overwhelms all other comparison methods and achieves
80.01% average accuracy. This experiment shows that
BMKEP has the incremental ability for the longer sequence
of tasks.

5.6. The Growth of Model size

The size growth of each part in BMKP is shown in Table 8.
As we can see, the size of the pattern basis (i.e., B) is quite
stable, but the size of the knowledge representations (i.e., A)
increase linearly with the number of learned tasks.

5.7. Plasticity and Stability Analysis

Figure 4 illustrates the classification accuracy of each task
during incremental learning on CIFAR-100. As can be seen,
for DER, each task performance peaks after finishing train-
ing and decays with subsequent task learning. Because the
training data for episodic-memory based methods include
sufficient new-task samples and partial old-task samples, the
sufficient new-task samples guarantee the high plasticity for
DER, while the partial old-task samples may not support
the original data distribution and can not entirely prevent
forgetting. In contrast, the performance of GPM for each
task is stable due to its gradient projection mechanism. How-
ever, the performance of each task after training is smaller
than BMKP and GPM, revealing that the gradient direction
restriction leads to low plasticity of GPM. As for our BMKP,
the working memory guarantees high plasticity, and the long-
term memory ensures the non-degrading performance of
each task.



Table 9. Incremental learning results of BMKP with different A for
the first or the last 5 layers on CIFAR-100.

Layers ‘ A ‘ 1 ‘ 2 ‘ 5 ‘ 10
First 5 ACC (%) 79.62 | 80.84 | 80.05 | 79.79
Memory (MB) | 26.75 | 26.29 | 26.12 | 26.48
Last 5 ACC (%) 79.62 | 79.35 | 80.18 | 79.55
Memory (MB) | 26.75 | 25.89 | 24.78 | 24.70
5.8. Effectiveness of L,., for Different Layer

In this section, we tried to tune the weight of L,.., for
different layers. As shown in Table 9, higher weights (2 for
the first five layers) for shallower layers bring BMKP better
performance (in both accuracy and memory usage).
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