
Technical Appendix for Decoupling Learning and Remembering:
a Bilevel Memory Framework with Knowledge Projection

for Task-Incremental Learning

Wenju Sun1 Qingyong Li1,2,3 Jing Zhang1 Wen Wang1 Yangli-ao Geng1,2,3,*

1Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University
2Frontiers Science Center for Smart High-speed Railway System, Beijing Jiaotong University

3The Key Laboratory of Cognitive Computing and Intelligent Information Processing of
Fujian Education Institutions, Wuyi University

{SunWenJu,liqy,j_zhang,wangwen,gengyla}@bjtu.edu.cn

1. Human Memory Mechanism
The classic Atkinson-Shiffrin human memory model [22]

assumes that human memory consists of three separate mem-
ory stores: sensory memory, short-term memory, and long-
term memory. They play different roles in human learning.
The sensory memory is responsible for caching the envi-
ronmental stimuli captured by sense organs, such as visual
signals inputted by eyes. Most of the cached signals decay
rapidly unless they attract the attention of the brain. Such
signals are then transferred to the short-term memory. The
short-term memory has a larger capacity and a longer storage
duration, which allows it to process the signals into informa-
tion to facilitate human decision-making and behavior. Then,
the brain utilizes a rehearsal process to re-organize impor-
tant information into compact representations, which can be
viewed as knowledge and will be carried to the long-term
memory for storing. The long-term memory has the largest
capacity and the longest storage duration, where the stored
knowledge can be recalled back to the short-term memory
as the brain need.

Remarkably, recent studies [7, 17] suggest that the re-
hearsal process can be viewed as a self-organization process
which is detailed as follows. The brain first tries to represent
raw information (from the short-term memory) by utilizing
old patterns (stored in the long-term memory) which have
been built previously. If the old patterns can represent the
raw information well, then the “representation coefficients”
instead of the raw information are transferred to the long-
term memory for storing. Otherwise, some new patterns will
be built from the raw information; the new patterns together
with the old patterns are utilized to represent the raw infor-
mation; then the “representation coefficients” along with the
new patterns are transferred to the long-term memory for

*Corresponding author: Yangli-ao Geng (gengyla@bjtu.edu.cn).

storing. All the above steps follow the principle of minimum
energy consumption.

The memory mechanism and rehearsal process above
make human beings good at learning new knowledge incre-
mentally.

2. Experimental Details
2.1. Experimental Environment

All experiments reported in the manuscript and appendix
are conducted on a workstation running OS Ubuntu 16.04
with 18 Intel Xeon 2.60GHz CPUs, 256 GB memory, and 6
NVIDIA RTX3090 GPUs.

2.2. List of Hyperparameters

We summarize the hyperparameters for each method used
in experiments in Table 1.

2.3. Dataset Statistics

In this work, we select three classification datasets to
evaluate the proposed BMKP method. We list the statistical
information of these three datasets in Table 2.

3. Implementation Details
3.1. Knowledge Projection for Convolution layer

In the paper, we introduce the process of knowledge pro-
jection on linear layers, which can be easily generalized to
the convolution layers. Specifically, the convolution layer
can be transformed into a special case of the fully connected
layer [19]. Let ci×hi×wi, co×ci×k×k and co×ho×wo be
the sizes of the input image (or feature map), the convolution
kernel and the output feature map, respectively (wi, hi, and
ci donate the width, height, and channel of the input tensor
X , respectively; wo, ho, and co donate the width, height,

1

Table 1. List of hyperparameters for the baselines and our BMKP. Here, ’KD’ represents "Knowledge distillation".

Methods Hyperparameters

LwF [12]

learning rate: 0.01
batch size: 32
tempture: 2
KD weight: 5e-4

SI [31]
learning rate: 0.03 (CIFAR-10), 0.1 (CIFAR-100), 0.05 (Tiny-ImageNet)
batch size: 16
regularizer weight: 0.5

DGR [21]
learning rate: 0.1 (CIFAR-10), 0.05 (CIFAR-100)
batch size: 64 (CIFAR-10), 128 (CIFAR-100)
KD weight: 0.1 (CIFAR-10), 1 (CIFAR-100)

GEM [14]
learning rate: 0.03 (CIFAR-10, CIFAR-100), 0.05 (Tiny-ImageNet)
batch size: 32 (CIFAR-10, CIFAR-100), 64 (Tiny-ImageNet)

oEWC [20]
learning rate: 0.03 (CIFAR-10, CIFAR-100), 0.2 (Tiny-ImageNet)
batch size: 32 (CIFAR-10, CIFAR-100), 16 (Tiny-ImageNet)
regularizer weight: 10 (CIFAR-10), 5 (CIFAR-100), 25 (Tiny-ImageNet)

LwM [8]

learning rate: 0.03 (CIFAR-10), 0.01 (CIFAR-100), 0.5 (Tiny-ImageNet)
batch size: 32 (CIFAR-10, CIFAR-100), 16 (Tiny-ImageNet)
KD weight: 1 (CIFAR-10, CIFAR-100), 0.5 (Tiny-ImageNet)
grad cam distillation weight: 1

DI [27]
learning rate: 0.005 (CIFAR-10), 0.05 (CIFAR-100), 0.1 (Tiny-ImageNet)
batch size: 32 (CIFAR-10, CIFAR-100), 16 (Tiny-ImageNet)
KD weight: 0.5 (CIFAR-10, CIFAR-100), 5 (Tiny-ImageNet)

DER [3]
learning rate: 0.03
batch size: 32
KD weight: 0.3 (CIFAR-10), 0.1 (CIFAR-100, Tiny-ImageNet)

HAL [4]
learning rate: 0.03 (CIFAR-10), 0.05 (CIFAR-100)
batch size: 32

PASS [32]

learning rate: 1e-4 (CIFAR-10, Tiny-ImageNet), 5e-4 (CIFAR-100)
batch size: 64 (CIFAR-10, CIFAR-100), 32 (Tiny-ImageNet)
KD weight: 10 (CIFAR-10, Tiny-ImageNet), 0.2 (CIFAR-100)
prototype weight: 0.2 (CIFAR-10), 0.05 (CIFAR-100), 0.5 (Tiny-ImageNet)

GPM [19]
learning rate: 0.02 (CIFAR-10), 0.01 (CIFAR-100), 0.02 (Tiny-ImageNet)
batch size: 64 (CIFAR-10, CIFAR-100), 32 (Tiny-ImageNet)

Adam-NSCL [23]
learning rate: 1e-5 (CIFAR-10), 1e-4 (CIFAR-100), 5e-5 (Tiny-ImageNet)
batch size: 32 (CIFAR-10, CIFAR-100), 16 (Tiny-ImageNet)

CLS-ER [2]
learning rate: 0.1 (CIFAR-10, CIFAR-100), 0.05 (Tiny-ImageNet)
batch size: 32

BMKP (ours)
learning rate: 0.05 (CIFAR-10, CIFAR-100), 0.03 (Tiny-ImageNet)
batch size: 128
regularizer weight: 1 (CIFAR-100), 10 (CIFAR-10, Tiny-ImageNet)

and channel of the output tensor, respectively, and k denotes
the size of convolution kernel). As shown in Figure 1, the

convolution process can be reformulated as a product of
two matrices with the sizes of (ho · wo) × (ci · k · k) and

Table 2. Dataset statistics.

Dataset Split CIFAR-10 Split CIFAR-100 Split Tiny-ImageNet

num. of tasks 5 10 10
input size 3× 32× 32 3× 32× 32 3× 64× 64
Classes/task 2 10 20
Training samples/task 9,000 4,500 9000
Validation samples/task 1,000 500 1000
Test samples/task 2,000 1,000 1000

Figure 1. Diagram of convolution operation in matrix multiplication format. wi, hi, and ci donate the width, height, and channel of the input
tensor X , respectively; wo, ho, and co donate the width, height, and channel of the output tensor, respectively, and k denotes the size of
convolution kernel.

(ci·k·k)×co. With the above transformation, we can perform
the knowledge projection on the generated (ho·wo)×(ci·k·k)
matrix.

3.2. Network Parameter Composing

During incremental learning, the dimension of pattern
basis B increases as the number of learned tasks. However,
the previously learned At will not change, which can incur
the dimension mismatching problem between B and At. To
handle this issue, the expansion of B is constrained to be
strictly incremental, meaning that the previously learned
basis in B keeps unchanging when adding new basis into
B. To be more specific, as shown in Figure 2, take layer l
as an example, the first m′ row of Bl are exactly the basis
after learning the first t tasks. Thus, during working memory
parameter composing, BMKP clip the superfluous basis in
Bl and then multiplies Al

t with it to obtain the composed
parameter W l

t . With this design, the previously learned At

is still applicable to the expanded B.

4. The Influence of Basis on Each Task
We next analyze how each basis affects each task. To

this end, we calculated the weight of last layer knowledge
representations of all tasks {AL

1 , A
L
2 , ..., A

L
T } on all basis

and presented it in a heat map in Figure 3. As can be seen, all
basis contribute to all subsequent tasks. Moreover, weights
on the new basis are smaller than on the old, showing that
BMKP tends to reuse the shared knowledge.

5. Additional Experiments
5.1. The Computational Efficiency of BMKP

Compared with the baseline methods, BMKP has two
additional steps: the knowledge projection and the long-
term memory updating, which may incur more computation
consumption. Nevertheless, we will show the computation

Clipped
part

Pattern Basis
after

Learning the
first t tasks

Pattern Basis Bl

pl+1

m'

pl

m'× =
Working Memory

Parameter
Wl

pl+1

pl

m

Knowledge
Representation

Atl

Figure 2. Diagram about how to “multiply” the pattern basis Bl ∈ Rpl+1×m′
by the knowledge representation Al

t ∈ Rm×pl to get the
network parameter W l

t ∈ Rpl+1×pl . m′ and m (m′ ≤ m) denote the number of basis after learning the first t tasks and learning all the
tasks, respectively. pl and pl+1 represent the number of neurons in the network layer l and l + 1, respectively.

Table 3. Time consumption (second) in last incremental task.

Methods Split CIFAR-10 Split CIFAR-100 Split Tiny-ImageNet

GPM [19] training 389 390 1155
DER++ [3] training 1450 1457 6073

Working memory learning 373 402 1192
Knowledge projection 38 39 180
Long-term memory updating 72 72 108
BMKP (ours) training 483 513 1480

GPM [19] testing 4.1 4.1 4.9
DER++ [3] testing 4.5 4.5 4.7
BMKP (ours) testing 4.3 4.5 5.2

Figure 3. Diagram of the contribution of each basis for the last
layer knowledge representation of all tasks.

complexity of these two steps is acceptable.

During the knowledge projection step, the major computa-
tional overhead stems from the singular value decomposition
(SVD), which incurs a O(HW 2) computational cost for a
H × W matrix (assuming H > W without loss of gener-
ality) [19]. Specifically for our convolution scenario, let
ci×hi×wi, co×ci×k×k and co×ho×wo be the sizes of
the input image (or feature map), the convolution kernel and
the output feature map, respectively. As shown in Figure 1,
the convolution process can be reformulated as a product
of two matrices with the sizes of (ho · wo) × (ci · k · k)
and (ci · k · k) × co. With this transformation, what the
SVD applying on is actually a (ho ·wo)× (ci · k · k) matrix
(i.e., H = ho · wo and W = ci · k · k,), which cause a
O
(
(ho · wo)× (ci · k · k)2

)
computational cost. Therefore

the total computational overhead of the knowledge projec-
tion step is

∑
O
(
(ho · wo)× (ci · k · k)2

)
, where the sum-

mation is taken over all the network layers. As the kernel
side k is usually small enough (e.g., 3 in our case), the com-
putational consumption of the knowledge projection step is
generally acceptable.

For the long-term memory updating step, retraining the

knowledge representation A will take up additional time.
However, since this step is only used for fine-tuning, we nor-
mally take a small number of iteration epochs. Besides, the
parameter that requires gradient update is smaller (the size
of A is smaller than that of the original network parameter
W), which also saves some time.

Table 3 reports the time consumption of each stage in
BMKP. As can be seen, the knowledge projection and the
long-term memory updating step take much lesser time com-
pared with the working memory learning stage. Conse-
quently, the total time consumption of BMKP is acceptable.

As for the inference, BMKP needs to re-build the working
memory parameters according to the task label, which indeed
incurs extra time costs. Nevertheless, the bottom part of
Table 3 empirically suggests that the inference speed of
BMKP is still competitive compared with the two baselines.

5.2. Results using Larger Backbone

We carried out experiments with ResNet34 [10] as the
network backbone, and report the result in Table 4.

Table 4. Result (ACC %) with ResNet34 as the network backbone.

Methods Split CIFAR-10 Split CIFAR-100

GPM 84.96 66.14
BMKP 93.58 77.2

5.3. Comparison with Mask-based methods

Following SparCL, we carried out experiments on CIFAR-
10 and Tiny-ImageNet, and the results are reported in Table 5.
The compared mask-based methods include PackNet [15],
LPS [24], and SparCL [25]. Notably, SparCL also keeps an
exemplar memory with 500 samples. As can be seen, BMKP
has a similar performance to SparCl on the easier CIFAR10
tasks. Besides, in the more challenging Tiny-ImageNet,
BMKP performs much better than all comparison methods.
Notably, the performance of BMKP is much more stable
than others, with the lowest variance.

Table 5. Comparison result (ACC %) with with Mask-based meth-
ods on CIFAR-10 and Tiny-ImageNet experiments. Results with
(†) stem from SparCL [25].

Methods Split CIFAR-10 Split Tiny-ImageNet

PackNet† 93.73±0.6 61.88±1.0
LPS† 94.50±0.5 63.37±0.8
SparCL† 95.19±0.3 52.19±0.4
BMKP 94.49±0.2 70.36±0.2

Table 6. Comparison with expansion-based methods on 20-split-
CIFAR-100 Superclass dataset. (†) and (‡) denote the result re-
ported from APD [28] and GPM [19], respectively. (*) indicates
the methods that do not adhere to Task-IL setup. Single-task learn-
ing (STL) trains a separate network for each task and serves as an
upper bound of Task-IL methods.

Methods ACC (%) Capacity (%)

STL*† 61.00 2000

PNN† 50.76 271
DEN† 51.10 191
RCL† 51.99 184
APD† 56.81 130
GPM‡ 57.72 100
BMKP(ours) 57.82 100

Table 7. Comparison results (ACC %) on 20-split CIFAR-100
and 25-split Tiny-ImageNet. Results with (†) stem from Adam-
NSCL [23].

Methods 20-split
CIFAR-100

25-split Tiny-
ImageNet

EWC† 71.66 52.33
MAS† 63.84 47.96
MUC-MAS† 67.22 41.18
SI† 59.76 45.27
LWF† 74.38 56.57
InstAParam† 51.04 34.64
GD-WILD† 77.16 42.74
GEM† 68.89 -
A-GEM† 61.91 53.32
MEGA† 64.98 57.12
OWM† 68.47 49.98
Adam-NSCL† 75.95 58.28
GPM 77.55 68.62

BMKP (ours) 85.81 80.01

5.4. Comparison with Expansion-based Methods

Following Additive Parameter Decomposition (APD)
[28], we carry out experiments on 20-split-CIFAR-100 Su-
perclass dataset. The compared expansion-based methods
include Single Task Learning (STL), Progressive Neural
Network (PNN) [18], Dynamically Expandable Networks
(DEN) [29], Reinforced Continual Learning (RCL) [26],
APD [28]. Notably, STL is the upper bound of Task-IL
methods since it trains a separate network for each task. Be-
sides, we also compare BMKP with a memory-based method
GPM [19]. In this experiment, all methods and BMKP use
the LeNet-5 as the network backbone, and we report the
classification accuracy over all learned tasks and the net-

Table 8. Diagram of memory usage (MB) of each components in BMKP during incremental learning on CIFAR100.

Methods
Task No.

1 2 3 4 5 6 7 8 9 10

Adam-NSCL [23] 38.42 38.42 38.42 38.42 38.42 38.42 38.42 38.42 38.42 38.42
GPM [19] 21.09 27.61 29.94 31.18 31.57 31.74 31.83 31.83 32.08 32.10

Pattern Basis 0.31 0.35 0.36 0.36 0.36 0.36 0.37 0.37 0.37 0.37
Knowledge Representations 2.26 4.84 7.46 10.12 12.80 15.49 18.19 20.90 23.62 26.34
BMKP 2.57 5.19 7.82 10.48 13.16 15.85 18.56 21.27 23.99 26.71

Figure 4. Diagram of ACC (%) of each task during incremental learning on CIFAR-100.

work capacity compared with the standard LeNet-5. The
results are reported in Table 6, both BMKP and GPM are
memory-based methods and do not expand network capac-
ity. Besides, BMKP achieves the best performance with an
average accuracy of 57.82% with fixed network capacity.

5.5. Comparison with More Tasks

This section evaluates the performance of BMKP with a
longer sequence of tasks. Following Adam-NSCL, we con-
duct experiments on 20-split CIFAR-100 and 25-split Tiny-
ImageNet, where 20-split CIFAR-100 is constructed by split-
ting CIFAR-100 into 20 tasks, and 25-split-TinyImageNet
is constructed by splitting Tiny-ImageNet into 25 tasks.
The comparison methods in this experiment include Elastic
Weight Consolidation (EWC) [11], Memory Aware Synapses
(MAS) [1], MUC-MAS [13], Synaptic Intelligence (SI) [31],
Learning without Forgetting (LwF) [12], InstAParam [6],
GD-WILD [16], A-GEM [5], MEGA [9], OWM [30], and
Adam-NSCL [23]. Table 7 reports the comparison results.
On 20-split CIFAR-100, our method achieves the best accu-
racy of 85.81%, which is 8.26% higher than the second-best
performance. As for the 25-split Tiny-ImageNet, BMKP
overwhelms all other comparison methods and achieves
80.01% average accuracy. This experiment shows that
BMKP has the incremental ability for the longer sequence
of tasks.

5.6. The Growth of Model size

The size growth of each part in BMKP is shown in Table 8.
As we can see, the size of the pattern basis (i.e., B) is quite
stable, but the size of the knowledge representations (i.e., A)
increase linearly with the number of learned tasks.

5.7. Plasticity and Stability Analysis

Figure 4 illustrates the classification accuracy of each task
during incremental learning on CIFAR-100. As can be seen,
for DER, each task performance peaks after finishing train-
ing and decays with subsequent task learning. Because the
training data for episodic-memory based methods include
sufficient new-task samples and partial old-task samples, the
sufficient new-task samples guarantee the high plasticity for
DER, while the partial old-task samples may not support
the original data distribution and can not entirely prevent
forgetting. In contrast, the performance of GPM for each
task is stable due to its gradient projection mechanism. How-
ever, the performance of each task after training is smaller
than BMKP and GPM, revealing that the gradient direction
restriction leads to low plasticity of GPM. As for our BMKP,
the working memory guarantees high plasticity, and the long-
term memory ensures the non-degrading performance of
each task.

Table 9. Incremental learning results of BMKP with different λ for
the first or the last 5 layers on CIFAR-100.

Layers λ 1 2 5 10

First 5 ACC (%) 79.62 80.84 80.05 79.79
Memory (MB) 26.75 26.29 26.12 26.48

Last 5 ACC (%) 79.62 79.35 80.18 79.55
Memory (MB) 26.75 25.89 24.78 24.70

5.8. Effectiveness of Lreg for Different Layer

In this section, we tried to tune the weight of Lreg for
different layers. As shown in Table 9, higher weights (2 for
the first five layers) for shallower layers bring BMKP better
performance (in both accuracy and memory usage).

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In European Confer-
ence on Computer Vision, pages 139–154, 2018. 6

[2] Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learn-
ing fast, learning slow: a general continual learning method
based on complementary learning system. In International
Conference on Learning Representations, 2022. 2

[3] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and SIMONE CALDERARA. Dark experience for
general continual learning: A strong, simple baseline. In Ad-
vances in Neural Information Processing Systems, volume 33,
pages 15920–15930, 2020. 2, 4

[4] Arslan Chaudhry, Albert Gordo, Puneet Kumar Dokania,
Philip Torr, and David Lopez-Paz. Using hindsight to anchor
past knowledge in continual learning. In AAAI Conference on
Artificial Intelligence, 2021. 2

[5] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with
a-gem. In International Conference on Learning Representa-
tions, 2019. 6

[6] Hung-Jen Chen, An-Chieh Cheng, Da-Cheng Juan, Wei Wei,
and Min Sun. Mitigating forgetting in online continual learn-
ing via instance-aware parameterization. In Advances in
Neural Information Processing Systems, volume 33, pages
17466–17477, 2020. 6

[7] Rosemary A Cowell, Morgan D Barense, and Patrick S Sadil.
A roadmap for understanding memory: Decomposing cogni-
tive processes into operations and representations. Eneuro,
6(4), 2019. 1

[8] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng,
Ziyan Wu, and Rama Chellappa. Learning without mem-
orizing. In IEEE Conference on Computer Vision and Pattern
Recognition, June 2019. 2

[9] Yunhui Guo, Mingrui Liu, Tianbao Yang, and Tajana Rosing.
Improved schemes for episodic memory-based lifelong learn-
ing. In Advances in Neural Information Processing Systems,
volume 33, pages 1023–1035, 2020. 6

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016. 5

[11] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,
John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural net-
works. Proceedings of the National Academy of Sciences,
114(13):3521–3526, 2017. 6

[12] Zhizhong Li and Derek Hoiem. Learning without forget-
ting. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(12):2935–2947, 2017. 2, 6

[13] Yu Liu, Sarah Parisot, Gregory Slabaugh, Xu Jia, Ales
Leonardis, and Tinne Tuytelaars. More classifiers, less for-
getting: A generic multi-classifier paradigm for incremental
learning. In European Conference on Computer Vision, pages
699–716, 2020. 6

[14] David Lopez-Paz and Marc' Aurelio Ranzato. Gradient
episodic memory for continual learning. In Advances in
Neural Information Processing Systems, volume 30, pages
6467–6476, 2017. 2

[15] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 7765–7773, 2018. 5

[16] Inyoung Paik, Sangjun Oh, Taeyeong Kwak, and Injung Kim.
Overcoming catastrophic forgetting by neuron-level plastic-
ity control. In AAAI Conference on Artificial Intelligence,
volume 34, pages 5339–5346, 2020. 6

[17] Maureen Ritchey and Rose A Cooper. Deconstructing the pos-
terior medial episodic network. Trends in cognitive sciences,
24(6):451–465, 2020. 1

[18] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 5

[19] Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projec-
tion memory for continual learning. In International Confer-
ence on Learning Representations, 2021. 1, 2, 4, 5, 6

[20] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Ag-
nieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pascanu,
and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. In International Conference on
Machine Learning, pages 4528–4537, 2018. 2

[21] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In Advances
in Neural Information Processing Systems, volume 30, 2017.
2

[22] Kenneth W Spence and Janet Taylor Spence. Psychology of
learning and motivation. Academic Press, 1967. 1

[23] Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu.
Training networks in null space of feature covariance for
continual learning. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 184–193, 2021. 2, 5, 6

[24] Zifeng Wang, Tong Jian, Kaushik Chowdhury, Yanzhi Wang,
Jennifer Dy, and Stratis Ioannidis. Learn-prune-share for
lifelong learning. In IEEE International Conference on Data
Mining, pages 641–650, 2020. 5

[25] Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei
Niu, Tong Jian, Bin Ren, Stratis Ioannidis, Yanzhi Wang,
and Jennifer Dy. Sparcl: sparse continual learning on the
rdge. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. 5

[26] Ju Xu and Zhanxing Zhu. Reinforced continual learning.
In Advances in Neural Information Processing Systems, vol-
ume 31, pages 907–916, 2018. 5

[27] Hongxu Yin, Pavlo Molchanov, Jose M. Alvarez, Zhizhong
Li, Arun Mallya, Derek Hoiem, Niraj K. Jha, and Jan Kautz.
Dreaming to distill: data-free knowledge transfer via deepin-
version. In IEEE Conference on Computer Vision and Pattern
Recognition, June 2020. 2

[28] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju
Hwang. Scalable and order-robust continual learning with ad-
ditive parameter decomposition. In International Conference
on Learning Representations, 2020. 5

[29] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju
Hwang. Lifelong learning with dynamically expandable net-
works. In International Conference on Learning Representa-
tions, 2018. 5

[30] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual
learning of context-dependent processing in neural networks.
Nature Machine Intelligence, 1(8):364–372, 2019. 6

[31] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In International
Conference on Machine Learning, pages 3987–3995, 2017.
2, 6

[32] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-
Lin Liu. Prototype augmentation and self-supervision for
incremental learning. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 5871–5880, June 2021.
2

	. Human Memory Mechanism
	. Experimental Details
	. Experimental Environment
	. List of Hyperparameters
	. Dataset Statistics

	. Implementation Details
	. Knowledge Projection for Convolution layer
	. Network Parameter Composing

	. The Influence of Basis on Each Task
	. Additional Experiments
	. The Computational Efficiency of BMKP
	. Results using Larger Backbone
	. Comparison with Mask-based methods
	. Comparison with Expansion-based Methods
	. Comparison with More Tasks
	. The Growth of Model size
	. Plasticity and Stability Analysis
	. Effectiveness of Lreg for Different Layer

