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In this supplementary material, we provide more details
about motion augmentation and the scene-dependent Mix-
ture datasets created upon ShanghaiTech. Besides, more
implementation details on video parsing and hierarchical
semantic contrast (HSC) are provided. More visualization
results including frame-level anomaly scores and feature
distribution of the ShanghaiTech test set are also illustrated.
Finally, we also include the running time of our proposed
method for the sake of reference.

1. Details on Motion Augmentation
1.1. Rotation-driven Skeleton Augmentation

We use HRNet [6] pre-trained on the MS-COCO key-
point detection dataset [4] to extract skeleton features.
Fig. 1 illustrates the skeleton keypoints defined in MS-
COCO. The parent and descendant nodes of each keypoint
are listed in Table 1. In our motion augmentation, spatial
transformation is conducted by randomly choosing a key-
point to rotate. The chosen keypoint is rotated around its
parent node by a rotation angle α that is randomly sampled
within a pre-defined range. The reasonable rotation range
of each keypoint is different due to the human anatomical
structure. Therefore, we manually define the range of each
keypoint and list all in Table 1.

1.2. Selection of Normal/Abnormal Samples

The samples generated in motion augmentation are not
guaranteed to be normal, therefore we apply our trained
model to discriminate normal and abnormal samples as in-
troduced in Section 3.5. (Training and Test). More specifi-
cally, we use the reconstruction error of the motion stream
defined in Eq.(11) for discrimination. That is, given an aug-
mented sample s and its encoded motion feature fmot

s , the
reconstruction error is

Smot(fmot
s ) = ∥fmot

s −Θmot(

N∑
i=1

wiMmot(i))∥22. (1)

*Corresponding author.
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Figure 1. 2D human skeleton keypoints defined in MS-COCO.

Table 1. The pre-defined rotation range of each keypoint in our
spatial transformation for motion augmentation.

Keypoint Parent Descendant Rotation Range (degree)

0, 1, 2, 3, 4 - - -
5 3 7, 9 [-10, 10]
6 4 8, 10 [-10, 10]
7 5 9 [-90, 90]
8 6 10 [-90, 90]
9 7 - [0, 90]

10 8 - [0, 90]
11 5 13, 15 [-10, 10]
12 6 14, 16 [-10, 10]
13 11 15 [-90, 90]
14 12 16 [-90, 90]
15 13 - [-90, 0]
16 14 - [-90, 0]

The notations are defined the same as in Eq.(11) in the pa-
per.

Then, we set a normality threshold Tnorm and an
anomaly threshold Tabn for the selection of normal and ab-
normal samples. When Smot(fmot

s ) < Tnorm, the sample
s is determined as normal. When Smot(fmot

s ) > Tabn, the
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Figure 2. Reconstruction error histogram of original training sam-
ples on Avenue and ShanghaiTech.

sample is viewed as abnormal. Any augmented sample with
a reconstruction error between Tnorm and Tabn is discarded.
In our experiments, we set Tnorm = 0.2 and Tabn = 0.8
for all datasets. For the sake of reference, Fig. 2 illus-
trates the histograms of reconstruction errors obtained on
the original Avenue and ShanghaiTech training sets, which
contain normal samples only. From this figure, we see that
Tnorm = 0.2 is a quite strict threshold for normality and
Tabn = 0.8 is reasonable for anomalies.

1.3. Normal/Abnormal Binary Classifier

As mentioned in Section 3.5. (Training and Test), we
leverage both normal and abnormal augmented samples
to additionally train a binary classifier, which can boost
the performance further. More specifically, a normal aug-
mented sample is assigned with a pseudo label y = 0 and
an abnormal sample is assigned with a pseudo label y = 1.
Then, the binary classifier is trained using the cross-entropy
loss

Lmot
aug = −ylog(ŷ)− (1− y)log(1− ŷ), (2)

where ŷ is the predicted classification probability. The clas-
sifier is a three-layer MLP, where the number of hidden
units is 512, 32, and 2 respectively. The ReLU function
is used in the first layer and dropout with a probability of
0.6 is deployed between each layer. The Softmax function
is utilized after the last layer.

2. Details on ShanghaiTech Mixture Datasets
To investigate the performance of our method on scene-

dependent anomaly detection, we additionally create three
mixture datasets based on ShanghaiTech. The Mixture
[01, 02] set consists of videos selected from the scene ‘01’
and ‘02’. We partly take the test videos of ‘01’ contain-
ing the cyclist events into the training set and delete them
from the test set. It implies that cyclist becomes normal
in the scene ‘01’, but it is still abnormal in the scene ‘02’.
The Mixture [04, 08] set includes videos of scene ‘04’ and
‘08’. We take some videos including cyclist events from the

test set of scene ‘04’ into the training set, and take some
videos including running and skater events from the test set
of scene ‘08’ into the training set. Mixture [10, 12] consists
of videos selected from scene ‘10’ and ‘12’. We take some
videos including cyclist or tricyclist events from the test set
of scene ‘12’ into the training set. More details of the mix-
ture datasets are shown in Table 2.

3. More Implementation Details
3.1. Details on Video Parsing

we adopt the pre-trained YOLOv3 [5] and FairMOT [8]
to detect and track objects. The threshold of detection is
set to 0.8 for ShanghaiTech and Avenue but set to 0.5 for
UCSD Ped2 due to its low resolution. The threshold of
tracking is set to 0.7, 0.5, and 0.3 for ShanghaiTech, Av-
enue, and UCSD Ped2, respectively. Besides, we only track
people, bicycle, tricycle, cars and such vehicles. Mean-
while, to achieve meaningful motion features, we only feed
an object tracklet containing more than 10 tracked frames
into PoseConv3D [3]. For scene feature extraction, we de-
ploy the max-pooling with a size of 4 after the classifier of
DeepLabV3+ [1], which leads to the dimension of the scene
feature DB to be 1590, 880, and 330 for ShanghaiTech, Av-
enue and UCSD Ped2, respectively.

3.2. Details on Hierarchical Semantic Contrast

In our hierarchical semantic contrast method, the scene-
appearance/motion feature encoders are implemented by
two-layer MLPs, where the number of hidden units is set
to [2048, 1280] and [1792, 1280], respectively, for appear-
ance and motion encoders. The appearance/motion feature
decoders are also implemented by two-layer MLPs, where
the number of hidden units is set to [1152, 1024] and [1024,
512] for appearance and motion decoders, respectively. The
ReLU function is employed in the first layer and batch nor-
malization is utilized between each layer. The linear clas-
sifiers consist of one linear layer, and the number of out-
puts is 23, 2, and 1 for ShanghaiTech, Avenue, and UCSD
Ped2 respectively, which are the number of scene clusters
obtained by DBSCAN. Besides, all models are trained for
200 epochs in our experiments.

4. More Results
4.1. Qualitative Analysis

ShanghaiTech. The proposed method is able to detect mul-
tiple abnormal events in one video, such as multiple bicy-
cles in the test video 01 0134 shown in Fig. 3. Besides,
our method is not sensitive to the change of object views,
for instance, the varying view of bicycles in the test video
01 0134 and 06 0153. We also present a failed case as the
test video 08 0159 shown in Fig. 3. Our method may fail
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Table 2. Details of ShanghaiTech Mixture datasets.

Dataset Training Videos Test Videos Scene Normality Anomaly

Mixture [01, 02]

01 0016, 01 0029, 01 0051,
01 0052, 01 0054, 01 0063,
01 0073, 01 0076, 01 0132,
01 0133, 01 0138, 01 0139,
01 0140, 01 0162, 01 0163,

01 0014, 01 0015, 01 0030,
01 0053, 01 0064, 01 0129,
01 0130, 01 0131, 01 0134,
01 0135, 01 0136, 01 0141,
02 0128, 02 0161, 02 0164

01 pedestrian,
cyclist

skater,
tricyclist,
running,
vehicle

01 0177, 01 020, 01 030, 02 001,
02 002, 02 003, 02 004, 02 005,
02 006, 02 007, 02 008, 02 009,
02 010, 02 011, 02 012, 02 013,

02 014, 02 01

02 pedestrian cyclist

Mixture [04, 08]

04 001, 04 002, 04 003, 04 004,
04 005, 04 006, 04 007, 04 008,
04 009, 04 010, 04 011, 04 012,
04 013, 04 014, 04 015, 04 016,
04 017, 04 018, 04 019, 04 020,
04 0003, 08 001, 08 005, 08 006,
08 007, 08 008, 08 009, 08 010,
08 011, 08 012, 08 013, 08 014,

04 0001, 04 0004, 04 0010,
04 0011, 04 0012, 04 0013,
04 0046, 04 0050, 08 0058,
08 0077, 08 0078, 08 0179

04 pedestrian,
cyclist

running,
chasing,
jumping,
tumble,
walking

circularly,
throwing,

skater, stroller
08 015, 08 016, 08 017, 08 018,
08 019, 08 022, 08 029, 08 030,
08 031, 08 038, 08 041, 08 042,

08 047, 08 0044, 08 0079, 08 0080,
08 0156, 08 0157, 08 0158,

08 0159, 08 017

08
pedestrian,
running,
skater

cyclist

Mixture [10, 12]

10 001, 10 002, 10 003, 10 004,
10 005, 10 006, 10 007, 10 008,
10 009, 10 010, 10 011, 12 001,
12 002, 12 003, 12 004, 12 005,

10 0037, 10 0038, 10 0042,
10 0074, 10 0075, 12 0149,
12 0152, 12 0173, 12 0174,
12 017

10 pedestrian
cyclist,

motorcyclist,
running

12 006, 12 007, 12 008, 12 009,
12 010, 12 011, 12 012, 12 013,

12 014, 12 015, 12 0142, 12 0143,
12 0148, 12 0151, 12 015

12 pedestrian,
cyclist

running,
vehicle

to detect the anomalies if objects are occluded and not de-
tected, e.g. an occluded runner in this case. In addition, an
abnormal object may be not detected if it moves so fast that
meaningful skeleton keypoints cannot be extracted due to
motion blur.

Avenue. The proposed method outperforms all previous
SOTA methods on the Avenue dataset. As shown in Fig. 4,
our method detects diverse anomalies in the test video 06,
including a man moving towards cameras and a man throw-
ing some clutter. Our method achieves a high frame-level
AUC of 98.32% for test video 12, where leaping and throw-
ing actions are correctly detected as anomalies. Some failed
cases occurred due to occlusion, motion blur, or the dis-
tance far away from cameras, as shown in the test video 01
in Fig. 4.

UCSD Ped2. Despite only the scene stream of our model
being utilized on the UCSD Ped2 dataset, it reaches a per-
fect frame-level AUC in the test video 02 and 07 as shown
in Fig. 5. But it fails to detect a couple of anomalies, e.g.

an occluded bicycle in the test video 09, partially due to no
consideration of motion information.

ShanghaiTech Mixture. Fig. 6 shows the performance
of the proposed method on normal videos on the created
ShanghaiTech Mixture datasets. In these scene-dependent
sets, cyclists in the test videos 01 0129 and 12 0174, and
a man running in the test video 08 0078 become normal.
From Fig. 6 we observe that our HSC model without mo-
tion augmentation (MA) can successfully recognize most
of these events as normality with a low anomaly score in
the test videos 01 0129 and 08 0078. In the test video
12 0174, the HSC model without MA detects the cyclist
as an anomaly because the training set contains few cyclist
samples. With motion augmentation, our model generates
lower anomaly scores for these normal events, validating
the effectiveness of our augmentation strategy.

The distribution of encoded latent features on Shang-
haiTech test set. Fig. 7 visualizes the distribution of scene-
dependent features from the ShanghaiTech test set, obtained
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01_0134

06_0153

08_0159

AUC=97.06%

AUC=98.40%

AUC=80.51%

Figure 3. Frame-level anomaly scores of test videos on ShanghaiTech. The first two rows present successful cases, and the last row presents
a failed case. The green (red) bounding boxes represent the detected (undetected) objects, and the red regions indicate ground truth.

06
AUC=94.42%

01
AUC=89.09%

12
AUC=98.32%

Figure 4. Frame-level anomaly scores of test videos on Avenue. The first two rows present successful cases, and the last row presents a
failed case. The green (red) bounding boxes represent the detected (undetected) objects, and the red regions indicate ground truth.
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02
AUC=100%

07
AUC=100%

09
AUC=99.56%

Figure 5. Frame-level anomaly scores of test videos on UCSD Ped2. The first two rows present successful cases, and the last row presents
a failed case. The green (red) bounding boxes represent the detected (undetected) objects, and the red regions indicate ground truth.

12_0174
(Normal Video in [10, 12])

08_0078
(Normal Video in [04, 08])

01_0129
(Normal Video in [01, 02])

Figure 6. Frame-level anomaly scores of normal test videos on ShanghaiTech Mixture. The blue lines are anomaly scores predicted by HSC
w/o MA, and the orange lines represent the scores predicted by HSC w/ MA (MA−,+ denotes generating normal and abnormal samples).
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(c) Scene-motion (w/o HSC) (d) Scene-motion (w/ HSC)(a) Scene-appearance (w/o HSC) (b) Scene-appearance (w/ HSC)

Figure 7. t-SNE [7] visualization of the scene-appearance/motion features of the ShanghaiTech test set, encoded by our models without or
with hierarchical semantic contrast. The points with the same color belong to an identical scene.

by the models without or with HSC. Like those features on
the training set as shown in Fig. 4 in the paper, we ob-
serve that the features on the test set also distribute more
compactly within identical classes and more separately be-
tween different classes, demonstrating the effectiveness of
our proposed hierarchical semantic contrast.

4.2. Running Time

All our experiments are run on one NVIDIA A6000
GPU. The FairMOT [8] tracker with YOLOv3 [5] runs at 25
FPS with an average of 8 objects/frame. For one clip from
ShanghaiTech (16 frames and more than 100 objects), the
scene feature extractor takes 235.9 milliseconds (ms), the
ViT [2] takes 460.3 ms, the HRNet [6] and PoseConv3D [3]
totally take 537.5 ms, and the scene-appearance and scene-
motion autoencoders totally take 3.4 ms. The entire frame-
work runs about 21 FPS.
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