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1. Implementation Details of Pilot Experiments

As mentioned in the main paper, we conducted a pilot
experiment to investigate the false negative issue. In this
section, we will introduce the implementation details of the
pilot experiment. Considering different sounds of playing
drums (as depicted in Fig. 1 of the main paper) are seman-
tically matched and should share equal roles in locating the
drums in visual scenes, we reasonably assume that samples
from the same categories are mutually False Negatives.

Firstly, we examine the distribution of false negatives
when training on the VGGSound [2] dataset. Specifically,
we count the number of samples from the same category in
a mini-batch, denoted as N . Then the ratio of false nega-
tives in a mini-batch is calculated by N/B with batch size
as B. When adopting random sampling with a batch size of
128, the mean ratio is statistically 39.27%. The ratio will
undoubtedly increase when employing a bigger batch size,
e.g., 61.17% with a batch size of 256.

Secondly, we examine whether more false negatives will
affect audio-visual localization performance. Concretely,
we adopt ResNet-18 as the backbone to encode audio and
visual features and a standard NCE [5] loss is used to up-
date network parameters. When loading data of a training
batch, we randomly select a category and then sample from
the selected category with a probability of p. Since we ran-
domly sample with the remaining probability of 1 − p, the
proportion of false negatives in a mini-batch should be pos-
itively related to p and is always higher than p. Without
loss of generality, we adopt a batch size of 128 and pro-
gressively increase the value of p from 0 to 0.5. Corre-
spondingly, the actual ratio of false negatives increases from
39.27% to 60.79%. As shown in Table S1, a significant per-
formance drop is observed, indicating that false negatives
substantially harm the model quality.

*Indicates equal contribution

Table S1. Pilot experiment results on VGGSound-144k. FN Ratio
represents the statistical ratio of false negatives during training.

p FN Ratio(%) Flickr CIoU(%) VGG-SS CIoU(%)
0.0 39.27 79.93 36.11
0.1 43.21 78.72 34.95
0.2 46.86 78.32 34.91
0.3 51.37 76.71 33.98
0.4 55.83 75.91 33.94
0.5 60.79 67.48 25.42

Table S2. Ablation of warm up epochs.

warm-up Flickr CIoU(%) VGG-SS CIoU(%)
0 84.33 35.07
3 85.74 37.29
5 84.33 35.93

10 83.53 37.61

2. Ablation Analysis

In this section, we conduct thorough ablation experi-
ments on various design choices in FNAC including warm-
up epochs, dropout rate, and regularization distance loss,
etc. All experiments are trained on VGG-Sound 10k and
tested on Flickr and VGG-SS test sets.

2.1. Analysis of Warm-up Epochs

As introduced in the main paper, we warm up the net-
work with only NCE loss for 3 epochs, then integrate our
regularization for the remaining epochs during the training.
We show that warm-up brings slightly better performances
but is not necessary for FNAC. In Table S2, we ablate dif-
ferent warm-up epochs. As shown, 3 epochs of warm-up
bring 1.41% CIoU improvement over the model without
warm-up. Further, it is observed that a longer warm-up pe-
riod does not bring additional performance gain. It indicates
that FNAC does not rely on warm-up to obtain superior per-
formances.
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Table S3. Ablation of visual dropout rate.

Visual Dropout Flickr CIoU(%) VGG-SS CIoU(%)
0.1 77.10 35.76
0.3 81.12 34.75
0.5 82.32 36.43
0.7 84.73 36.49
0.9 85.74 37.29

Table S4. Ablation of different distance metrics for regularization
loss. All models are trained on the VGG-Sound 10k training set.

Loss Flickr CIoU(%) VGG-SS CIoU(%)
L2 80.72 34.02
Smooth L1 82.32 34.47
L1 85.74 37.29

Table S5. Ablation of audio augmentation

Audio Aug Flickr CIoU(%) VGG-SS CIoU(%)
w augmentation 82.73 38.64
w/o augmentation 85.74 37.29

Table S6. Ablation of sounding region visual feature threshold.
soft: no threshold is applied, the localization map is directly ap-
plied as a soft mask to extract localized visual features.

Thresh Flickr CIoU(%) VGG-SS CIoU(%)
0.2 81.92 37.74
0.3 83.53 38.32
0.4 82.73 37.70
0.5 83.53 37.29
0.6 85.74 37.29
0.7 84.73 34.49
Soft 83.13 36.00

2.2. Analysis of Visual Dropout Rate

An over-fitting issue is observed during the training
which normally requires an early stopping strategy [1, 3,
4, 7]. To relieve the over-fitting issue, following the con-
vention, we adopt dropout on the visual encoder and audio
encoder. Empirically, we found that audio dropout does not
affect the performances. However, visual dropout can effec-
tively address the over-fitting and improve the results. We
ablate different visual dropout rates in Table S3. As shown,
we observe that the visual dropout is essential for perfor-
mance and a larger dropout rate (0.9) achieves the best re-
sult. We hypothesize that it is because the audio features
are relatively simple but the visual features are redundant.
Thus, an audio clip tends to over-fit to the most discrimi-
native visual region of its paired image and ignore all other
visual entities, which hinders the ability of semantic-aware
audio-visual localization. The visual dropout may encour-
age the audio features to be compared with broader visual

Figure S1. Analysis of batch size on Flick. Our method boosts
performances when batch size increases.

Figure S2. Analysis of batch size on VGG-SS. Our method boosts
performances when batch size increases.

features so as to increase localization robustness.

2.3. Analysis of Regularization Loss

In our implementation, we measure the distance between
the adjacency matrices to enforce regularization. In Ta-
ble S4, we ablate different distance metrics including l1
distance, l2 distance and smoothed l1 distance. As shown,
using L1 distance achieves the best performance.

2.4. Analysis of Batch Size

In this section, we investigate the effects of batch sizes.
As discussed in the main paper, more false negatives will
be encountered in a large batch, whereas a larger batch
size is preferred in contrastive learning for better represen-
tation [5]. We show results with different batch sizes in
Fig. S1 and S2. As shown, when the batch size is 64 or
less, the false negative ratio is low and nearly insignificant,
so our method provides no benefit or even hinders perfor-
mance. On the other hand, we observe a slight improvement
in the baseline as batch size increases. Nevertheless, false
negatives become prominent in large batch sizes, which is
the focus of our paper. Our proposed method improves per-
formance by effectively addressing false negatives, outper-
forming the baseline by a clear margin.



2.5. Analysis of Audio Augmentation

In this section, we ablate the audio augmentation. In our
implementation, we adopt audio augmentations including
Frequency mask and Time mask proposed in [6]. In Ta-
ble S5, we report results with and without audio augmenta-
tion. As shown, we can see that audio augmentation brings
improvement on Flickr test set but does not facilitate on the
more challenging VGG-SS test set.

2.6. Analysis of Sounding Visual Feature Threshold

In TNE, we generate audio-visual localization maps and
use the localization results to extract the localized visual
features, i.e., sounding region visual representations. We
enforce the extracted visual representations to be differ-
ent between the true negative samples, which encourages
the localization of authentic sound sources. In practice,
we choose a threshold to separate sounding regions and
quiet regions, lower threshold indicates stronger TNE since
larger visual regions are considered in the training. We
ablate this threshold in Table S6. We observe that the
Flickr test set prefers a higher threshold (0.6) while VGG-
SS prefers a lower threshold (0.3). We believe the reason
for this is that the VGG-SS test set is more challenging with
more complex scenes, so a stronger TNE may lead to bet-
ter localization robustness. Further, we show that directly
applying the localization map to extract sounding visual
features (Soft in Table S6) also achieves reasonable per-
formances, it indicates that TNE does not rely on a hard
threshold.

3. More Qualitative Results
To better understand the superiority of the learned

model, we report more visualization results in Fig. S3, S4
and S5. As shown, our model can better localize the sound-
source objects/regions in various audio-visual scenes.
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Figure S3. Qualitative results of FlickrSoundNet testset.
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Figure S4. Qualitative results of VGGSound-Source.
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Figure S5. Qualitative results of AVSBench.
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