
APPENDIX

A. More Details on Optical Flow Extraction

Before generating the trajectory, we need to calculate
dense optical flows frame-by-frame to provide the fine-
grained motion of each pixel. We follow the previous work
to remove camera motion and pre-extract the optical flows
of each video in the dataset offline. Details are as below.

Removing camera motion. To alleviate the influence of
camera motion, we follow previous work [67] to warp the
optical flow, which is also be applied in two stream video
action recognition method [71]. Specifically, by matching
SURF [6] interest point in two frames to estimate the cam-
era motion using RANSC [31] algorithm. Then the camera
motion is removed by rectifying the frame, and the optical
flow is re-calculated using the warped frame. This also re-
lieves the model from being disturbed by the background
and makes it pay more attention to the moving objects in
the foreground.

Pre-extracting optical flow. We use the denseflow1 tool
box to pre-extract warp optical flow before training follow-
ing [67,71]. We set the upper bound of flow value to 20. The
stride of flow is set to sflow = 1 if perform motion target
interpolation, otherwise is equal to the sampling stride of
the input rgb frames sflow = srgb. The whole video dataset
is split into chunks and processed on 4 nodes, each node is
equipped with 2 Intel Xeon CPUs (32 cores per CPU) for
video codec and 8 TITAN X GPUs for optical flow calcu-
lation speed-up. The extraction process spends about 1 day
on the Kinetics400 dataset.

B. More Details on Motion Trajectory Genera-
tion

As mentioned in Section 3, we use a motion trajectory
to represent long-term and fine-grained motion, which con-
sists of position features zp and shape features zs. To ex-
tract these two features, we first need to calculate a continu-
ous trajectory that tracks the position transition of a specific
grid point. We then consider the surrounding area of this
trajectory as a τ ×W ×W volume, as shown in Fig. 5. The
generation process of this trajectory is described in detailed
as following.

Tracking the trajectory. With the pre-extracted warp op-
tical flow ω, we are able to track the position transition of
each densely sampled grid point to produce a continuous
trajectory, i.e.,

pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ωt)(xt,yt), (6)

1https://github.com/yjxiong/dense_flow

𝑊

𝑊

𝜏

Trajectory volume
Motion Trajectory

Tracking 

Optical Flows

𝑡 𝑡 + 1

𝑡 + 𝜏

Grid Points

Figure 5. The detailed generation process of motion trajectory.

where ωt is the optical flow at step t. M is the median filter
kernel shapes 3× 3 and ∗ denotes the convolution operator.

Pre-extracting the trajectory. To reduce the io overhead
of loading and decoding flow images during pre-training,
we pre-process the dataset to generate dense trajectories of
each video and pack them in the compressed pickle files.
In pre-training, we use a special dataloader to sample K
trajectories with length L starting from the first frame of
each input 3D patch. During pre-training, we then crop and
resize the trajectories in the spatial dimension to maintain
the corresponding area with the input RGB frames.

Masking inaccurate trajectory. We notice that in most of
the video samples, the objects move out of the range of the
camera FOV. This circumstance often occurs on the objects
that are at the edge of the video. The tracked trajectories, in
this case, could be inaccurate, as visualized in Fig. 6. We
use a loss mask to remove these trajectories from the loss
calculation:

LM =
1

Np

Np∑
i=1

mi · Li, mi =

{
1, pt ∈ P

0, otherwise
(7)

where Np is the total number of unmasked patches, P =
{(xt, yt) | 0 < xt < W, 0 < yt < H} represents the points
in the video clip.

Figure 6. Illustration of the inaccurate trajectories (marked as
blue), which are caused by objects moving out of the camera FOV.

C. More Details on Baseline Reconstruction
Targets Extraction

In Section 4.2.2, we introduce different types of base-
line reconstruction targets (e.g., HOG, HOF and MBH) and
investigate the effect of reconstructing these targets in the
mask-and-predict task. In this section, we present the de-
tails of extracting these baseline reconstruction targets.



HOG. In our experiment, we utilize the successful applica-
tion of the HOG feature [21] in masked video modeling [75]
to represent appearance information. HOG is the statistic
histogram of image gradients in RGB channels. To speed up
the calculation, we re-implement the HOG extractor by con-
volution operator with Sobel kernel and the scatter method
in the PyTorch [50] Tensor API, and thus the calculation
process can be conducted on the GPU. With the exception
of the L2 normalization, which does not work in our prac-
tice, we precisely follow the recipe in Wei’s work [75] to
calculate a feature map of the entire image and then fetch
the 9-bins HOG feature in each RGB channel.

HOF and MBH. These two features are spatial-temporal
local features that have been widely used in the action
recognition task since the 2010s. Similar to the HOG
feature, these two features are the histogram of optical
flow [45], the only difference is that MBH is the second-
order histogram of the optical flow [22]. We implement
them based on the HOG extractor that deals with optical
flow.

D. More Details on Pre-training and Fine-
tuning Settings

We pre-train MME on the two large-scale video datasets
(cf. Tab. 8) and then transfer to four action recognition
benchmark datasets (cf. Tab. 9). We linearly scale the base
learning rate w.r.t. the overall batch size, lr = base lr ×
batchsize

256 . More details are presented as follows:

Something-Something V2.2 The default settings for
pre-training and fine-tuning on Something-Something V2
(SSv2) are shown in Tab. 8 and Tab. 9. We take the same
recipe as in [64].

Kinetics-400.3 The default settings for pre-training and
fine-tuning on Kinetics-400 (K400) are shown in Tab. 8 and
Tab. 9. We take the same recipe as in [64].

UCF101.4 We pre-train the model on the Kinetics-400 for
400 epochs and then transfer to the UCF101. The default
settings of fine-tuning are shown in Tab. 9.

HMDB51.5 The default setting is the same as in UCF101.

2https://developer.qualcomm.com/software/ai-
datasets/something-something

3https://www.deepmind.com/open-source/kinetics
4https://www.crcv.ucf.edu/data/UCF101.php
5https://serre- lab.clps.brown.edu/resource/

hmdb-a-large-human-motion-database/

config SSv2 K400

optimizer AdamW [48]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999 [11]
batch size 768
learning rate schedule cosine decay [47]
warmup epochs 40
flip augmentation no yes
augmentation MultiScaleCrop

Table 8. Pre-training setting.

config SSv2 K400 Others

optimizer AdamW
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
layer-wise lr decay 0.75 [5]
batch size 128
learning rate schedule cosine decay
warmup epochs 5
training epochs 30 75 100
flip augmentation no yes yes
RandAug (9,0.5) [20]
label smoothing 0.1 [61]
mixup 0.8 [83]
cutmix 1.0 [80]
drop path 0.1 [42]
repeated sampling 2 [38]

Table 9. Fine-tuning setting.

E. Additional Experimental Results on Abla-
tion Studies

Training speed-up versus performance decrease. To
speed up the training procedure during the ablation studies,
we (1) randomly select 25% videos from the training set
of Something-Something V2 dataset to pre-train the model,
(2) randomly drop 50% patches following [55], specifically,
we adopt a random masking strategy to select 50% input
patches to reduce the computation of self-attention. We
present a comparison across the speed-up and performance
decrease due to these techniques in Tab. 10. Notice that
with an acceptable performance drop (-3.7%), we speed up
the ablation experiment by 2.5 times.

Complexity and necessity of data pre-processing steps
The data pre-processing includes 4 steps: 1) pre-extracting
the optical flow; 2) removing the camera motion; 3) extract-
ing dense trajectories and 4) removing the inaccurate trajec-
tories. We only need to pre-process the data one time, taking
less than 24 hours, to get simpler and cleaner reconstruc-
tion targets. These targets can be reconstructed using a de-



Data Input patches Acc.@1 Acc.@5 Speed-up

100% 100% 64.8 89.7 1.0×
25% 50% 61.1 86.9 2.5×

Table 10. Training speed-up versus performance decrease. We
report the total time cost of the entire pre-training and fine-tuning
procedure. We use a random masking strategy to drop a portion of
input patches.

ViT-Small ViT-Base ViT-Large

56

60

64

68

A
cc

.@
1 

on
 S

SV
2

54.7

61.1
62.7

57.5

64.1 65.2

Ours
VideoMAE

Figure 7. Comparing MME and VideoMAE on different ViT
backbone. Our MME scales well on different ViT variants.

coder with fewer layers, leading to a faster pretraining pro-
cess compared with VideoMAE (2.12 vs. 2.24 min/epoch).
Besides, removing steps 2 and 4 lowers the performance on
SSV2 by 4.4% and 0.7%, respectively.

Scalability on model size of MME. We conduct exper-
iments on Something-Something V2 using different ViT
variants. In Fig. 7, both our MME and VideoMAE perform
better as the model size grows, and our MME outperforms
VideoMAE consistently. This shows the scalability and su-
periority of our method.

Detailed searching results of hyper-parameters. We con-
duct ablation studies on MME design in detail. Specifically,
we present detailed hyper-parameters searching results on
masking ratio and trajectory length design, as shown in
Fig. 8 and Fig. 9. Besides, we also complete the ablation
results on spatial trajectory density. Extended from Tab. 7c,
we increase the number of trajectories per patch from 4 to
16. Performance on SSV2 drops slightly by 0.7%, indicat-
ing that 4 trajectories are dense enough.

Comparing with the original version of dense trajectory.
We introduce the dense trajectories [66] into our mask mo-
tion modeling task to explicitly represent motion by densely
tracking trajectories of different object parts. This video
descriptor has been successfully applied in action recogni-
tion [66]. The iDT [67] further improves the dense trajec-
tories by removing the effects of camera motion, thus en-
hancing the performance of action recognition. The original
version of iDT combines short-term motion targets, includ-
ing HOF and MBH features to represent motion. However,
we found that only using the position changes to represent
objects’ movement is enough, see Tab. 11.

Comparing with the MaskFeat directly. We provide a di-

Additional features Acc.@1 Acc.@5

Traj. + MBH + HOF 63.5 88.2
Traj. (ours) 63.5 88.4

Table 11. Combining short-term motion features in a trajec-
tory volume. Discarding these additional short-term motion fea-
tures draws a competitive result.

rect comparison with MaskFeat using the MViTv2-S back-
bone by pre-training on K400 for 300 epochs and then fine-
tuning on SSvV2, following the recipe in MaskFeat. In
Tab. 12, our MME outperforms the MaskFeat by 1.5% on
SSv2.

Method Backbone SSv2 Acc.@1

MaskFeat MViTv2-S 67.7%
Ours MViTv2-S 69.2% (+1.5%)

Table 12. Comparison with MaskFeat on K400 and SSV2.

0 2 4 6 8
Trajectory Length (frame)

60

62

64
To

p-
1 

A
cc

 (%
) o

n 
SS

V
2

61.1 61.4

63.2

64.1
63.3

Figure 8. Ablation study on trajectory length.

40 50 70 90 95
Masking Ratio (%)

60

62

64

To
p-

1 
A

cc
 (%

) o
n 

SS
V

2

61.2

62.3

64.1

62.7

60.5

Figure 9. Ablation study on masking ratio.

F. More Visualization Results
We present more visualization results of the motion

trajectories. Videos are sampled from the Something-
Something V2 validation set. For each 3D cube patch shape
2× 16× 16, we visualize the first frame and the trajectories
start from it. All the trajectories are with length L = 6 as
our default setting.



(a) (b) (c) (d) (a) (b) (c) (d)

Figure 10. Visualization of predicted motion trajectory. Each column represents: (a) Masked frames; (b) ground truth; (c) prediction;
(d) original frame. Trajectories are colored from dark to light in chronological order.



(a) (b) (c) (d) (a) (b) (c) (d)

Figure 11. Visualization of predicted motion trajectory. Each column represents: (a) Masked frames; (b) ground truth; (c) prediction;
(d) original frame. Trajectories are colored from dark to light in chronological order.


