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In this supplement, we first provide additional experi-
ments (Sec. 1). Furthermore, we discuss the implementa-
tion details of our model including the network architec-
ture, training strategies, and hyperparameters (Sec. 2). We
also report the experiment details, such as one-shot facial
avatars and 3D-aware stylization (Sec. 3). Lastly, we pro-
vide additional visual results as a supplement of the main
paper (Sec. 4). Please refer to our accompanying supple-
mental video for more results.

1. Additional experiments
1.1. Deformation-aware discriminator

We propose a deformation-aware discriminator which
additionally takes the synthetic renderings as input. Fur-
thermore, we also take experiments on the parameter con-
ditioning method proposed in GNAREF [1]. Specifically, we
first train our model without either synthetic renderings or
FLAME parameters conditioning for about two days. Then,
we test two methods based on the same checkpoint and
report the changing trend of FID scores for two methods
in Fig. 1. The discriminator with synthetic rendering in-
put converges to a better FID score, while the one condi-
tioned on FLAME parameters incurs divergency. Note that
we have added random noise to the FLAME parameters for
better convergency following GNARF.
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Figure 1. Training convergency with the discriminator designs.
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Figure 2. Ablation study on the training strategies of 3D-aware
stylization.

1.2. Training strategy of 3D-aware stylization

We conduct an ablation study on two strategies for freez-
ing layers of the generator during 3D-aware stylization.
The first one is the default setting following StyleGAN-
NADA [5] that freezes all toRGB layers in the synthesis
network. Though it works in 2D space, we found it leads
to degraded image quality and dissymmetry. To this end,
we adopt another strategy which optimizes the last toRGB
layer for each synthesis network. In our case, there are three
StyleGAN-based synthesis network including a neural tex-
ture generator G ,,,,, a static tri-plane generator G sz4¢ic, and
a teeth completing module G+, S0 we add the last toRGB
layers of these three synthesis networks into optimization.
As can be seen in Fig. 2, the second strategy improves the
synthesis quality.

2. Implementation details

We implemented our 3D GAN framework on top of
the official PyTorch implementation of EG3D [2] '. We
adopt several hyperparameters and training strategies of
EG3D including blurred real images at the beginning, pose-
conditioned generator, density regularization, learning rates
of the generator and discriminator. Due the limitation of
computing material, we drop the two-stage training strategy

Uhttps://github.com/NVlabs/eg3d



Figure 3. Detect the landmarks related to eyes.

and fix the neural rendering resolution to 64 and the final
resolution to 512 instead.

Our teeth completing module G, receives the cropped
teeth features as input. To crop different-sized mouths into
a unified size while varying expressions, we obtain the 2D
mouth landmarks and FLAME parameters for each driv-
ing image during training and inference. Next, we crop the
mouth features on the tri-planes into squares by setting the
side e length and centering location based on these mouth
landmarks. Note that these cropped squared feature maps
are of different sizes due to different expressions and we
resize them to 64x64 for later synthesis networks. Finally,
the output mouth features are resized and transformed in-
versely.

2.1. Data preprocessing

We use FLAME template model to drive the facial de-
formation and use DECA [4] to extract FLAME parame-
ters. Since there is no suitable model to accurately extract
eye poses, we optimize eye poses with an off-the-shelf land-
mark detector 2. Specifically, the detector extracts five land-
marks around the eyes, as shown in Fig. 3. Accordingly,
we select five vertices on the template mesh and the opti-
mizable variables of eye poses are yaw and pitch. To op-
timize eye poses of a given portrait image, we minimize
the re-projection errors of the vertices and detected land-
marks by the PyTorch-implemented gradient descent. Since
the FLAME template mesh has a different scale to the pre-
trained EG3D model, we initially rescale the template by
2.5 for a coarse visual alignment and fine-tune the transla-
tion and scale during training.

Zhttps://mediapipe.dev/
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Figure 4. The detailed architecture of Geeth-

Figure 5. Gaze control while fixing identity and other expression
parameters.

2.2. Generator

Our generator introduces a style-unet-based teeth com-
pleting module Gy :r, Whose architecture is illustrated in
Fig. 4. The left part encodes the concatenated tri-plane teeth
textures with dimensions of 768 (256 x 3) into multi-scale
feature maps ranging from 642 to 82. Then the feature map
with a resolution of 82 is processed into the residual blocks
and fed into the right generator as the input feature map.
Finally, the generator outputs a 64 x 64 x 768 feature map.

3. Experiment details

Inversion-based one-shot facial avatars. We use an off-
the-shelf face detector [3] to extract camera poses and crop
the portraits in the wild to be consistent with the trainingset.
We further extract the FLAME parameters and obtain the
template mesh for each image by DECA [4]. Following
Pivotal Tuning Inversion (PTI) [60], we first optimize the la-
tent code for 450 iterations and then fine-tune the generator
weights for an additional 500 iterations.

3D-aware stylization. Following StyleGAN-NADA [5],
We optimize partial generator weights with others fixed. In
practice, we fixed all toRGB layers of the synthesis blocks
except for the last ones for the texture generator and static
generator. We also fix the NeRF decoders for preventing the
3D consistency from degeneration.



4. Additional visual results

In this section, we provide additional visual results as a
supplement to the main paper. Fig. 5 provides examples of
gaze animation. Fig. 6 provides selected examples of four
certain expressions and poses, highlighting the image qual-
ity, expression controllability (e.g. gaze animation), and the
diversity of outputs produced by our method. Fig. 7 pro-
vides a qualitative comparison against baselines on facial
animation.

Fig. 8 provides more results of animated virtual avatars
with high-quality shapes. Note that the motions of eyelids
can be reflected on the extracted meshes. Furthermore, the
eyes are modeled as convex, suggesting that “hollow face
illusion” is alleviatived. This is because while the gaze di-
rections are highly pose-related, the rotated eyeballs in the
template mesh provide an explicit gaze direction signal and
thus helps to model such pose-related attribute and decouple
them during inference.

Finally, we show additional results of the applications
of our methods including one-shot avatars for real portraits
and 3D-aware stylization in Fig. 9. We encourage readers to
view the accompanying supplemental video for the dynamic
results.



Figure 6. Generated examples with selected expressions and poses.



Surauq

smQ

NVDsJIUY

doygeoeiqg

NVD20100SIQ

Figure 7. Qualitative comparison against baselines.
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Figure 8. Animated virtual avatars with high-quality shapes.
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Figure 9. Visual results of one-shot avatars for real portraits and 3D-aware stylization.
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