
Supplementary Material:
Pose Synchronization under Multiple Pair-wise Relative Poses

In the supplementary material we give proof details
of the propositions in the method section and add
extra visualization of RGB-D scene recovery results over
ScanNet.

1. Proofs of Propositions and Theorems in
Section 3

1.1. Proof of Prop. 1

In this proof, we are going to show that whenα > 0, both

Q
{σlR},R,Si
α,lmax,0

and Q{σ
l
R},R,Si

α,lmax,0
are well defined and converge

to Q{σ
l
R},R,Si

α,∞,0 , Q{σ
l
t},t,Si

α,∞,0 with the following convergence
rate:

‖Q{σ
l
R},R,Si

α,lmax,0
−Q{σ

l
R},R,Si

α,∞,0 ‖1 ≤

√
eαλ1

lmax!
(αλ1)lmaxn, (1)

‖Q{σ
l
t},t,Si

α,lmax,0
−Q{σ

l
t},t,Si

α,∞,0 ‖1 ≤

√
eαλ1

lmax!
(αλ1)lmaxn. (2)

We first prove that the rotation part Q
{σlR},R,Si
α,lmax,0

converges to Q{σ
l
R},R,Si

α,∞,0 . For the translation part we apply
the same technique.

We begin with a practical assumption that {Rij |(i, j) ∈
E} can be discretized, meaning that the group in SO(3)
generated by {I3} ∪ {Rij |(i, j) ∈ E} is finite. We defineR
to be a finite supergroup in SO(3) of the group generated by
{I3} ∪ {Rij |(i, j) ∈ E} for the flexibility of discretization
resolution, which is implied by |R|. We index the group
elements in R as {g1, ..., g|R|} and fix g1 = I3. The group
adjacency matrix over the transformation graph G and group
R is defined as an n×n block matrixAR(G) ∈ Rn|R|×n|R|.
Each |R|×|R| blockAij is a (0, 1)-matrix withAij(k, l) =
δ(Rjigl, gk), where δ(·, ·) is the Kronecker Delta. AR(G)
can be interpreted as an adjacency matrix of a graph GR
that splits each vertex Si in G into |R| copies {Sik} :=
{Si1, ..., Si|R|}, and all the edges eij in G are also split into
|R| copies for a complete bipartite matching between {Sik}
and {Sjk}.

Given a fixed finite σR, PσR,R(·) becomes a Gaussian
distribution with only one parameter R, and the un-

normalized distribution of Rp over all the paths p with a
given length |p| = l is a mixture of gaussian distributions
with different means and weights, but identical standard
deviation

√
lσR. Thus this Gaussian mixture distribution

can be encoded with a block vector X(l) ∈ Rn|R|×1. Each
block X

(l)
i of length |R| encodes the distribution of the

means Rp ∈ R for p ∈ P(l)
1i , and each entry X(l)

i (j) in
the block indicates the weight of gj . For l = 0, we have
one candidate g1 = I3 for the rotation from S1 to itself, and
thus we setup the initialization and iteration for computing
the distribution of Rp of all the path lengths as

X(0) = e1,

X(l) = AR(G)X(l−1), l ≥ 1,
(3)

Where e1 is the one-hot vector in its first entry. For

simplicity we assume that σR =∞, and Q{σ
l
R},R,Si

α,lmax,0
(·) can

be computed with

Q
{σlR},R,Si
α,lmax,0

(gj) =

lmax∑
l=1

αl

l!
X

(l)
i (j)

=

(
lmax∑
l=1

(αAR(G))
l

l!
X(0)

)
i

(j),

(4)

and the residual is

∆lmax : = Q
{σlR},R,Si
α,∞,0 −Q{σ

l
R},R,Si

α,lmax,0

=

∞∑
l=lmax

(αAR(G))
l

l!
X(0).

(5)

Since AR(G) is real symmetric, let AR(G) = UΛUT

denote the diagonalization of AR(G), with the eigenvalues
λ1, ..., λn|R| distributed in the diagonal of Λ in descending
order. (5) is then reformed as

∆lmax
= U

( ∞∑
l=lmax

(αΛ)
l

l!

)
UTX(0). (6)

To show that (6) converges, it suffices to prove the
convergence of the infinite series

{
(αλk)l

l!

}
, 1 ≤ k ≤ n|R|.
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Note that
∞∑
l=0

(αλk)
l

l!
= eαλk (7)

is finite for every k, which gives limlmax→∞∆lmax
= 0.

Next we approximate the convergence rate of ∆lmax .
Since AR(G) is the adjacency matrix of GR, Λ is bounded
by

d(G) = d(GR) ≥ λ1 ≥ −λn|R|, (8)

Where d(·) is the graph degree. Moreover, GR can be
viewed as |R| identical copies of G, which means λ1 also
equals the spectral norm of the adjacency matrix of G.
Apply the Taylor remainder theorem, we have∣∣∣∣∣

∞∑
l=lmax

(αλk)
l

l!

∣∣∣∣∣ ≤
∣∣∣∣max(1, eαλk)

lmax!
(αλk)lmax

∣∣∣∣
≤ eαλ1

lmax!
(αλ1)lmax .

(9)

Since X(0) is a unit vector, we have

‖∆lmax‖2 ≤
eαλ1

lmax!
(αλ1)lmax . (10)

(10) holds for arbitrary discretization resolution |R| and in
the remaining part of this proof we consider the case where
the groupR generated by {I3}∪{Rij |(i, j) ∈ E} is infinite,
with R̂ being a discrete approximation. Let

R̂ij := argmin
R̂∈R̂

‖R̂−Rij‖F (11)

be the projection of Rij on R̂ and Q̂ be the distribution
generated by {R̂ij}, (i, j) ∈ E . Apply (10) to Q̂ and we

know that Q̂{σ
l
R},R,Si

α,lmax,0
converges to Q̂{σ

l
R},R,Si

α,∞,0 .

We define the difference between Q̂
{σlR},R,Si
α,lmax,0

and

Q̂
{σlR},R,Si
α,∞,0 as

(
∆̂lmax

)
i
. In the above we view

(
∆̂lmax

)
i

as the i-th block of the vector ∆̂lmax
indicating the strength

at ∀ĝj ∈ R̂. Now instead, we consider it as a function(
∆̂lmax

)
i
(·) : SO3 → R, composed of weighted Dirac

delta functions at ∀gj ∈ R̂ with σR = ∞. Suppose that
(∆lmax

)i (·) is also well defined with respect to Q. We have∫
R∈SO(3)

(∆lmax)i (R)dR =

∫
R∈SO(3)

(
∆̂lmax

)
i
(R)dR,

(12)
since on both sides we are counting over all the possible
paths of length greater than lmax. Given that |R̂| is a finite
constant, combining (10) and (12) shows that

n∑
i=1

‖ (∆lmax
)i ‖1 ≤

√
eαλ1

lmax!
(αλ1)lmaxn|R|. (13)

In fact, (12) holds for arbitrary σR since the 1-norm of any
probability distribution function equals 1. For the extreme
case where we set |R| = 1, we finish the proof with

n∑
i=1

‖ (∆lmax)i ‖1 ≤

√
eαλ1

lmax!
(αλ1)lmaxn. (14)
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1.2. Proof of Prop. 2

We hereby recall Prop. 2 first:

Suppose all Tij are independent and identically follow a
normal distribution R ∼ N (µR, σR), t ∼ N (µt, σt) with
probability w1 and a uniform distribution with probability
w2. Let P1, P2 be the PDFs of the two distributions. If
(1 − wαλ1

1 )P2(t) � 1, then almost surely the global

maximums of Q{σ
l
R},R,Si

α,∞,0 and Q
{σlt},t,Si
α,∞,0 are with in the

∆-neighborhood of the ground-truth, where

∆ ∼ O(λ
− 1

6
1 (lnαλ1)

2
3 ).

Moreover, this neighborhood is almost convex when we
choose σR, σt ∼ O(∆).

In this prove we focus on the property of translations
t and for rotations R a similar technique can be applied.
Without losing generality, we consider the case where
t?ij = 0,∀(i, j) ∈ E , meaning that the input tij is a
distribution

tij = Dt := w1N (0, σ2
1I) + w2U(d), (15)

where U(d) denotes a uniform distribution over the ball in
R3 of radius d. However, directly taking the distribution as
an input can cause ambiguity in defining the accumulated
translation along a path p. Therefore we still start from
a discrete setting. Moreover, since t is independent along
each dimension, we consider its component along one
dimension and call it t.

LetR, AR(G), X(0) be defined the same as in the proof
of Prop ??. For each block Aij , if we denote the translation
implied by the (u, v)-th entry as t(u, v), then Aij(u, v) is
assigned the value 1

ZPt∼Dt(t(u, v)), where Z is a global
regularization coefficient. It is obvious that all the blocks
Aij for (i, j) ∈ E are identical, which we denote as Dt,R
and as the resolution goes to infinity, A converges to Dt. In
fact, if A(G) denotes the adjacency matrix of G, then

AR(G) = A(G)⊗Dt,R. (16)

We can view the construction ofAR(G) as fixing a set of
evenly sampled {t(u, v)} in distribution Dt. For a path p =
(e1, e2, ..., e|p|) with finite length |p|, each t(ei), 1 ≤ i ≤



|p| takes value from {t(u, v)} with probability Dt,R(u, v).
By enforcing a high resolution |R|, we can approximate the
distribution of the translation t(p) along any path p with a
bounded length |p| ≤ lmax as

P (t(p)) =

|p|∏
i=1

Pt∼Dt(t(ei)). (17)

Thus, for any l ≤ lmax, X(l) = AR(G)lX(0) encodes the
distribution of all paths with length l. For the k-th block
X

(l)
k , |P(l)

1k = ‖X(l)
k ‖1 is the number of paths p from S1 to

Sk with length l and X(l)
k /‖X(l)

k ‖1 is the distribution from
which all such paths p are i.i.d. sampled. To be specific,

X
(l)
k /‖X(l)

k ‖1 = (Dt,R)le1. (18)

Next we bound the difference between the distribution of
sampled p and the real distribution (Dt,R)le1. In the
context of discretized distribution, we set a label r(p) to
a path p if t(p) falls into the r(p)-th bin among all the |R|
bins, and Pr := (Dt,R)le1(r) be the probability that p falls
into bin r. We index all the paths in P(l)

1k as p1, p2, ..., pm.
Let Yi,r be the indicator variable of r(pi) = r. Apply
Chernoff bound over Yi,r, 1 ≤ i ≤ m and any δ > 0:

P (|
m∑
i=1

Yi,r −mPr| > δmPr) < 2 exp
−mPrδ2

3
. (19)

Then apply union bound over all r, we have

P (|
m∑
i=1

Yi,r−mPr| < δmPr,∀r) > 1−2

|R|∑
r=1

exp
−mPrδ2

3
.

(20)
To analyze the concentration of t(pi), 1 ≤ i ≤ m, suppose
that bin 1 has a width of 2∆, i.e., for any p such that r(p) =
1, we have −∆ < t(p) < ∆. Compare the mass of the
central bin with bin r in the distribution of t(p), we have

Pr=1

Pr
=

∫∆

−∆

(
wl1

1√
2πσ1

e
−t2

2lσ2
1 + C(1− wl1)

)
dt

∫ (2r+1)∆

(2r−1)∆

(
wl1

1√
2πσ1

e
−t2
2lσ2

1 + C(1− wl1)

)
dt

,

(21)
Where C is a small constant to include the uniform part of
the distribution of t(p) . When ∆� d, (21) is bounded by

Pr=0

Pr
≥ e

(2r−1)2∆2

2lσ2
1 . (22)

In order to cluster t(p) for p ∈ P(l)
1k , we apply a gaussian

kernel with standard deviation σ2 at each sampled t(p) and
get a Gaussian mixture model

g(l)(t) =
∑
p∈P(l)

1k

e
− (t−t(p))2

2σ2
2 . (23)

For any −∆ ≤ t ≤ ∆,

g(l)(t) ≥
∑

p∈P(l)
1k ,

r(p)=1

e
− 4∆2

2σ2
2 . (24)

Moreover, for any |t| ≥ 5∆,

g(l)(t) ≤
∑

p∈P(l)
1k ,

r(p)=1

e
− 16∆2

2σ2
2 +

∑
p∈P(l)

1k ,
r(p)6=1

1. (25)

Combining (22) with (25), it is almost sure that

g(l)(t) ≤
∑

p∈P(l)
1k ,

r(p)=1

e− 16∆2

2σ2
2 +

1 + δ

1− δ

|R|∑
r=3

e
− (2r−1)2∆2

2lσ2
1

 .

(26)

Therefore when σ2
2 ≥ lσ2

1 and ∆ >
√

ln(1+2δ)
25 lσ1, the

global maximum of g(l)(t) is in (−5∆, 5∆).
Since we do not know the ground truth of t(p), it

remains to find out where bin 1 lies in. With a given
sample set t(P1), ..., t(pm). let W denote the event that
we successfully assign all the bins such that |

∑m
i=1 Yi,r −

mPr| < δmPr holds for every r. As long as the event
in the left-hand-side of 20 happens, P (W ) = 1 and bin
1 is assigned with at most ∆ error. If we discard every
|t(pi)| ≥ 6∆, 1 ≤ i ≤ m and set σ2 ≥ 6∆, then the global
maximum of g(l)(t) can be reached by gradient descend
from any remaining initial point t(p).

Next we generalize the above result to all the paths p
from S1 to Sk with length |p| ≤ lmax. The number of such
paths is bounded by

cλl1 − b ≤
lmax∑
l=1

|P l1k| ≤ cλl1 + b (27)

for some constant b, c, where λ1 is the largest eigenvalue of
A(G). For (20) to happen with high probability over all l,
we require

2
∑
l<lmax

|R|∑
r=1

exp
−cλl1Prδ(l)2

3
≤ e−c1 (28)

for some c1 > 0, leading to

δ(l) ∼ O(λ
− l

2
1 e

|R|
2lσ2

1 ln lmax). (29)

Therefore we require

∆ ∼ O(λ
− l

4
1 e

|R|
4lσ2

1 ln lmax

√
lσ1) = O(λ

− l
4

1 ln lmax

√
|R|).

(30)



Recall that in the proof of Prop. 1, we require lmax ∼
O(αλ1) to make all the paths of length greater than
lmax negligible. Since |R| ∼ O(1/∆), we have ∆ ∼
O(λ

− 1
6

1 (ln(αλ))
2
3 ).

1.3. Proof of Prop. 3

The derivative of QT with respect to t′ is given by

∂QT

∂t′
(T ′) = −

K∑
k=1

wk
σ2
k,t

e
−d2

σk,R,σk,t(T ′,Tk)(t′ − tk)

There

∂QT

∂t′
(T ′) = 0→ t′ =

K∑
k=1

wk
σ2
k,t
e
−d2

σk,R,σk,t(T ′,Tk)tk

K∑
k=1

wk
σ2
k,t
e
−d2

σk,R,σk,t(T ′,Tk)

.

To compute the derivative of QT with respec to R′, we
parameterize rotations near a current rotation R′ as

R = exp(c×)R′, ∀c ∈ R3.

Under this parameterization, we have ∀1 ≤ i ≤ 3

eTi ·
∂QT

∂c
(T ′)

=−
K∑
k=1

wk
σ2
k,R

e
−d2

σk,R,σk,t(T ′,Tk)〈R′, ei ×R′〉

+

K∑
k=1

wk
σ2
k,R

e
−d2

σk,R,σk,t(T ′,Tk)〈Rk, ei ×R′〉

=−
K∑
k=1

wk
σ2
k,R

e
−d2

σk,R,σk,t(T ′,Tk)〈R′R′T , ei×〉

+

K∑
k=1

wk
σ2
k,R

e
−d2

σk,R,σk,t(T ′,Tk)〈Rk, ei ×R′〉

=

K∑
k=1

wk
σ2
k,R

e
−d2

σk,R,σk,t(T ′,Tk)〈Rk, ei ×R′〉

=〈UΣV T , ei ×R′〉
=〈Σ, UTei × UUTR′V 〉
=〈Σ, UTei × UR〉, R = UTR′V (31)

Denote U = (u1,u2,u3)T . It is easy to check that

UT (ei×)U = ui×

Therefore, applying (31), we have that if ∂QT

∂R′ (T ′) = 0,
then

0 = 〈Σ,ui ×R〉, 1 ≤ i ≤ 3. (32)

Denote ui = (ui1, ui2, ui3)T , R = (rij)1≤i,j≤3, and Σ =
diag(σ1, σ2, σ3). Expanding (32), we arrive at ∀1 ≤ i ≤ 3

ui1(r23σ3−r32σ2)+ui2(r31σ1−r13σ3)+ui3(r12σ2−r21σ1) = 0.

It follows that

rijσj = rjiσi,∀1 ≤ i < j ≤ 3. (33)

Parameterize R using the axis-angle parameterization

R = cos(θ)I3 + (1− cos(θ))nnT + sin(θ)n× (34)

where n = (n1, n2, n3)T and θ are the rotation axis and
rotation angle respectively.

Substituting (34) into (33), we obtain

(σ2 − σ1)n1n2(1− cos(θ)) = (σ1 + σ2)n3 sin(θ) (35)

(σ1 − σ3)n1n3(1− cos(θ)) = (σ1 + σ3)n2 sin(θ) (36)

(σ3 − σ2)n2n3(1− cos(θ)) = (σ2 + σ3)n1 sin(θ)

We show that θ = 0. This means R = I3 or R′ = UV T ,
which ends the proof. Suppose θ 6= 0. It follows that ni 6=
0, 1 ≤ i ≤ 3. Otherwise sin(θ) = 0 as max(|ni|) > 0.
When ni 6= 0, 1 ≤ i ≤ 3, we have σi 6= σj ,∀1 ≤ i < j ≤
3. Without losing generality, we assume σ1 > σ2 > σ3. In
this case, factoring out θ in (35) to (36), we have

σ2 − σ1

σ1 − σ3
=
|n3|2(σ2 + σ1)

|n2|2(σ3 + σ1)
(37)

which results in a contradiction as the left side (37) is
negative while its right side is positive.

�

1.4. Proof of Prop. 4

We begin with simplifying the objective function of (15):∫
T ′∈R3×4

(
we−d

2
σR,σt

(T ′,T?j ) −
∑
k∈Cj

wke
−d2

σk,R,σk,t
(T ′,Tk)

)2

=w2 ·
∫
R′∈R3×3

e
−
‖R′−R?j ‖

2
F

σ2
R

∫
t′∈R3

e
−
‖t′−t?j ‖

2

σ2
t +

∑
k,k′∈Cj

wkwk′∫
T ′∈R3×4

e
−d2

σk,R,σk,t
(T ′,Tk)−d2

σ
k′,R,σk′,t

(T ′,Tk′ )

− 2w
∑
k∈Cj

wk

∫
R′∈R3×3

e
−
‖R′−R?j ‖

2
F

2σ2
R

− ‖R
′−Rk‖

2
F

2σ2
k,R

∫
t′∈R3

e
−
‖t′−t?j ‖

2
F

2σ2
t
− ‖t

′−tk‖
2

2σ2
k,t



=w2σ9
Rσ

3
tπ

6 + const

− 2w
∑
k∈Cj

wk

∫
R′
e
−
σ2
R+σ2

k,R

2σ2
R
σ2
k,R

‖R′−
R?j σ

2
k,R+Rkσ

2
R

σ2
R

+σ2
k,R

‖2F−
‖R?j−Rk‖

2
F

2(σ2
R

+σ2
k,R

)

∫
t′
e
−
σ2
t+σ2

k,t

2σ2σ2
k

‖t′−
t?j σ

2
k,t+tkσ

2
t

σ2
t+σ2

k,t

‖2−
‖t?j−tk‖

2

2(σ2
t+σ2

k,t
)

=w2σ9
Rσ

3
tπ

6 + const− 2w
∑
k∈Cj

(
wk(2π)6

σ9
Rσ

9
k,R

(σ2
R + σ2

k,R)
9
2

σ3
tσ

3
k,t

(σ2
t + σ2

k,t)
3
2

· e
−
‖R?j−Rk‖

2
F

2(σ2
R

+σ2
k,R

)
−
‖t?j−tk‖

2

2(σ2
t+σ2

k,t
)

)
(38)

For fixed σR and σt, it is clear that the optimal w is given
by

w? =
∑
k∈Cj

wk
( 2σ2

k,R

(σ2
R + σ2

k,R)

) 9
2
( 2σ2

k,t

(σ2
t + σ2

k,t)

) 3
2

· e
−
‖t?j−tk‖

2

2(σ2
t+σ2

k,t
) e
−
‖t?j−tk‖

2

2(σ2
t+σ2

k,t
) (39)

Substituting (39) into (38), we have that the optimal σ?R
and σt are given by

σ?R, σ
?
t = arg max

σR,σt

∑
k∈Cj

wk
( 2σtσ

2
k,t

(σ2
t + σ2

k,t)

) 3
2 e
−
‖t?j−tk‖

2

2(σ2
t+σ2

k,t
)

( 2σRσ
2
k,R

(σ2
R + σ2

k,R)

) 9
2 e
−
‖R?j−Rk‖

2
F

2(σ2
R

+σ2
k,R

) (40)
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1.5. Details on Variance Optimization of (40)

We solve (40) via alternating maximization, starting
from σR = median

k∈Cj
(σk,R) and σt = median

k∈Cj
(σk,t). When

σt is fixed, the optimization problem reduces to

max
σR

hσt(σR) (41)

where

hσt(σR) :=
∑
k∈Cj

wk,σt ·
( 2σRσ

2
k,R

σ2
R + σ2

k,R

) 9
2 e
−
‖R?j−Rk‖

2
F

2(σ2
R

+σ2
k,R

)

wk,t := wk ·
( 2σtσ

2
k,t

σ2
t + σ2

k,t

) 3
2 e
−
‖t?j−tk‖

2

2(σ2
t+σ2

k,t
) .

Computing the derivative of hσt(σR) with respect to σR,
we can see that σR is a critical point of hσt(σR) if

0 =
∑
k∈Cj

wk,σt ·
( 2σRσ

2
k,R

σ2
R + σ2

k,R

) 7
2 e
−
‖R?j−Rk‖

2
F

2(σ2
R

+σ2
k,R

)

(9σ2
k,R(σ2

k,R − σ2
R)

(σ2
R + σ2

k,R)2
+

2σ2
Rσ

2
k,R‖R?j −Rk‖2F

(σ2
R + σ2

k,R)3

)
(42)

Denote

ck,σR,1 =
( 2σRσ

2
k,R

σ2
R + σ2

k,R

) 7
2 e
−
‖R?j−Rk‖

2
F

2(σ2
R

+σ2
k,R

)
9σ2

k,R

(σ2
R + σ2

k,R)2
,

ck,σR,2 =
( 2σRσ

2
k,R

σ2
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It is easy to check that (42) is equivalent to

σ2
k ·
∑
k∈Cj

wk,σtck,σR,1 =
∑
k∈Cj

wk,σtck,σR,2. (43)

(43) leads the following formula for updating σR:

σR ←
√∑
k∈Cj

wk,σtck,σR,2/
∑
k∈Cj

wk,σtck,σR,1 (44)

Similarly, when σR is fixed, the optimization reduces to

max
σt
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where
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Computing the derivative of hσR(σt) with respect to σt,
we can see that σt is a critical point of hσR(σt) if
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Denote
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It is easy to check that (46) is equivalent to

σ2
k ·
∑
k∈Cj

wk,σRck,σt,1 =
∑
k∈Cj

wk,σRck,σt,2. (47)

(47) leads the following formula for updating σt:

σt ←
√∑
k∈Cj

wk,σRck,σt,2/
∑
k∈Cj

wk,σRck,σt,1 (48)

2. More qualitative results over RGB-D
datasets

We provide more results over the ScanNet dataset in
Figure 1. We observe that Step I and Step II can provide
good pose estimations in some of the cases while Step III is
capable of refining results with high noise after Step II.

3. Running time comparison over RGB image
datasets

We provide the running time of all the baseline methods
and ours in Table 1 over the Cornell-Artsquad and San-
francisco dataset. SESync takes over 3 hours on Cornell-
Artsquad and Shonan Rotation Averaging fails to converge
over Cornell-Artsquad.



Ground Truth Ours (Step I + II) IRLS-L0 Ours (Step I + II + III)

Figure 1. Comparison of qualitative results over 5 scenes from ScanNet. Step I and Step II provides accurate pose estimation in Row 2 and
5 while Step III refines the others considerably.

IRLSL0 RobustR SDP SESync SFMMRF SHONAN TransSync K-Best Ours
Cornell-Quad 93 1574 50 - 570 - 5323 302 595
San-francisco 161 763 15 335 433 1327 1819 133 243

Table 1. Running time (sec.) comparison of all baselne methods and ours over RGB image datasets.
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