Supplementary Material:
Pose Synchronization under Multiple Pair-wise Relative Poses

In the supplementary material we give proof details
of the propositions in the method section and add
extra visualization of RGB-D scene recovery results over
ScanNet.

1. Proofs of Propositions and Theorems in
Section 3
1.1. Proof of Prop. 1

In this proof, we are going to show that when o > 0, both

QialiixR S and Q{UR} 51 are well defined and converge
Qicjo’z]:OR 5 Qigggé S' with the following convergence
rate:
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We first prove that the rotation part @

R,S;
converges to Qia;}o

the same technique.

We begin with a practical assumption that {R;;|(¢,j) €
&} can be discretized, meaning that the group in SO(3)
generated by {3} U{R;;|(4,7) € £} is finite. We define R
to be a finite supergroup in SO(3) of the group generated by
{I3} U{R;;|(i,7) € &} for the flexibility of discretization
resolution, which is implied by |R|. We index the group
elements in R as {g1, ..., g} and fix g; = I3. The group
adjacency matrix over the transformation graph G and group
R is defined as an nxn block matrix Ag (G) € R*RIx7IRI,
Each |R| x |R| block A;; is a (0, 1)-matrix with A;;(k, ) =
S(Rjigi, gx), where 6(-, -) is the Kronecker Delta. Ax(G)
can be interpreted as an adjacency matrix of a graph Gr
that splits each vertex S; in G into |R| copies {S;x} :=
{Si1, ..., Sijr| }, and all the edges e;; in G are also split into
|R| copies for a complete bipartite matching between {S;x }
and {S;x}.

Given a fixed finite oz, P°%(.) becomes a Gaussian
distribution with only one parameter R, and the un-

‘. For the translation part we apply

normalized distribution of R, over all the paths p with a
given length |p| = [ is a mixture of gaussian distributions
with different means and weights, but identical standard
deviation \/ZUR. Thus this Gaussian mixture distribution
can be encoded with a block vector XV e R™RIX1 Each
block X D of length |R| encodes the distribution of the

means R, € R forp € 7711 , and each entry Xi(l)(j) in
the block indicates the weight of g;. For [ = 0, we have
one candidate g; = I3 for the rotation from .S to itself, and
thus we setup the initialization and iteration for computing
the distribution of 12, of all the path lengths as

X(O) = €1,

3)
X0 = Ag(@)Xx=Y  1>1,

Where e; is the one-hot vector in its first entry. For

simplicity we assume that o = o0, and Qi”liifos (+) can
be computed with
lmax 1
QU () =Y X ()
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and the residual is
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Since Ag(G) is real symmetric, let Ax(G) = UAUT
denote the diagonalization of A (G), with the eigenvalues
A1, ooy Ap|R| distributed in the diagonal of A in descending
order. (3)) is then reformed as

Almax —U < Z (alA) ) UTX(O) (6)
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To show that (6) converges, it suffices to prove the
l
convergence of the infinite series { (a?!’“) } ,1 <k <n|R|.
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is finite for every k, which gives lim;_, o0 Ay, = 0.

Next we approximate the convergence rate of A; .
Since A (G) is the adjacency matrix of Gz, A is bounded
by

d(G) =d(Gr) > A1 > =My, 3

Where d(-) is the graph degree. Moreover, G can be
viewed as |R| identical copies of G, which means A; also
equals the spectral norm of the adjacency matrix of G.
Apply the Taylor remainder theorem, we have
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Since X (© is a unit vector, we have
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holds for arbitrary discretization resolution |R| and in
the remaining part of this proof we consider the case where
the group R generated by {13} U{R;;|(¢,j) € £} is infinite,
with R being a discrete approximation. Let

R,j := argmin |R — Ryj| » (11)

ReR

be the projection of I2;; on R and Q be the distribution
generated by {R”} (i,7) € €. Apply (10) to @) and we

know that Q{UR} e converges to Q({fé‘;} OR /S
We define the difference between Qigl’;}axR - and

Q{UR} RS
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as (Almx) . In the above we view (Almax) '

as the ¢-th block of the vector Almax indicating the strength
at Vg; € R. Now instead, we consider it as a function

(Almx> (:) : SO* — R, composed of weighted Dirac

delta functions at Vg; € R with of = 0. Suppose that
(Ag,,...); () is also well defined with respect to (). We have
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since on both sides we are counting over all the possible
paths of length greater than l,,,x. Given that |R] is a finite
constant, combining and shows that

n
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In fact, holds for arbitrary o ! since the 1-norm of any
probability distribution function equals 1. For the extreme
case where we set |[R| = 1, we finish the proof with
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1.2. Proof of Prop. 2
We hereby recall Prop. 2 first:

Suppose all T;; are independent and identically follow a
normal distribution R ~ N (ugr,or),t ~ N (ut, o¢) with
probability w1 and a uniform distribution with probability
wy. Let Py, Py be the PDFs of the two distributions. If
(1 — w§™)Py(t) < 1, then almost surely the global

: ,R,S; ! t,S; . .
maximums of Qigo’z}o and Qigég o' are with in the

A-neighborhood of the ground-truth, where
1
A~ O *(Ina)?).
Moreover, this neighborhood is almost convex when we
choose og, o1 ~ O(A).

In this prove we focus on the property of translations
t and for rotations R a similar technique can be applied.
Without losing generality, we consider the case where
t;; = 0,Y(i,j) € &, meaning that the input ¢;; is a
distribution

ti; = Dy := wiN(0,0%1) + wold(d), (15)

where U(d) denotes a uniform distribution over the ball in
R3 of radius d. However, directly taking the distribution as
an input can cause ambiguity in defining the accumulated
translation along a path p. Therefore we still start from
a discrete setting. Moreover, since t is independent along
each dimension, we consider its component along one
dimension and call it £.

Let R, Az (G), X(©) be defined the same as in the proof
of Prop ??. For each block A;;, if we denote the translation
implied by the (u,v)-th entry as t(u,v), then A;;(u,v) is
assigned the value % Pyp, (t(u,v)), where Z is a global
regularization coefficient. It is obvious that all the blocks
A;; for (i,j) € & are identical, which we denote as D; r
and as the resolution goes to infinity, A converges to D;. In
fact, if A(G) denotes the adjacency matrix of G, then

Ar(G) = A(G) ® Dy w. (16)

We can view the construction of A (G) as fixing a set of
evenly sampled {¢(u, v)} in distribution D;. For a path p =
(e1, €2, ..., ep|) With finite length [p|, each t(e;),1 < i <



|p| takes value from {t(u,v)} with probability D; & (u,v).
By enforcing a high resolution |R|, we can approximate the
distribution of the translation ¢(p) along any path p with a
bounded length |p| < lnax as

|pl

= [[ Pi~o. (t(e:)). (17)

Thus, for any | < lyax, X = AR(G)ZX(O) encodes the
distribution of all paths with length {. For the k-th block
X,gl), |791(2 = ||X,gl) |1 is the number of paths p from S to
Sk with length [ and X ,gl) /X ,gl) |l1 is the distribution from
which all such paths p are i.i.d. sampled. To be specific,

xPNxPNy = (Dyr)er. (18)

Next we bound the difference between the distribution of
sampled p and the real distribution (D;x)'e;. In the
context of discretized distribution, we set a label r(p) to
a path p if ¢(p) falls into the r(p)-th bin among all the |R|
bins, and P, := (D; z)'e1(r) be the probability that p falls
into bin . We index all the paths in P&) as P1,P2, -+, Pm-
Let Y;, be the indicator variable of r(p;) = r. Apply
Chernoff bound over Y; »,1 <7 < mand any 6 > 0:

“ —mP,6?
P13 Yy —mP,| > §mP,) < 2exp mT (19)
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Then apply union bound over all r, we have

IR|
|ZYM mP,| < §mP,,¥r) > 1-2) " exp

i=1 r=1
(20
To analyze the concentration of ¢(p;), 1 < i < m, suppose
that bin 1 has a width of 2A, i.e., for any p such that r(p) =
1, we have —A < #(p) < A. Compare the mass of the
central bin with bin r in the distribution of ¢(p), we have

a0t o1 - w1)> dt

fA w1
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Where C' is a small constant to include the uniform part of
the distribution of ¢(p) . When A < d, is bounded by

Pr—o (27«71)22&4’
— > o1 22
P Z (22)

In order to cluster ¢(p) for p € 731 1> we apply a gaussian
kernel with standard deviation o at each sampled ¢(p) and
get a Gaussian mixture model

_ (t—t(mp)? t<p>>2
g(l) Z e 25 . (23)
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Combining with (23), it is almost sure that
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Therefore when US > lo% and A > 4/ %zol, the

global maximum of g(!)(¢) is in (—5A,5A).

Since we do not know the ground truth of #(p), it
remains to find out where bin 1 lies in. With a given
sample set t(Py),...,t(pm). let W denote the event that
we successfully assign all the bins such that | Y. | Y; . —
mP.| < dmP, holds for every r. As long as the event
in the left-hand-side of 20| happens, P(W) = 1 and bin
1 is assigned with at most A error. If we discard every
[t(p:)| > 6A,1 < i < m and set 05 > 6A, then the global
maximum of g(¥)(¢) can be reached by gradient descend
from any remaining initial point ¢(p).

Next we generalize the above result to all the paths p
from Sy to Sy with length |p| < l;1ax. The number of such
paths is bounded by

lmax

A —b< Y Pl <ed +b @7)
=1

for some constant b, ¢, where A; is the largest eigenvalue of
A(G). For to happen with high probability over all [,
we require

[R|
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for some ¢; > 0, leading to
1 ARI
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Therefore we require
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Recall that in the proof of Prop. 1, we require lyax ~
O(aX;) to make all the paths of length greater than
Imax neghglble Since |R| ~ O(1/A), we have A ~

O(\; * (In(ar))?).
1.3. Proof of Prop. 3

The derivative of Q7 with respect to t’ is given by
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To compute the derivative of Q7 with respec to R’, we
parameterize rotations near a current rotation R’ as

R = exp(ex)R/, Ve € R®.

Under this parameterization, we have V1 <14 < 3
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Denote U = (u1,us,u3)?. Itis easy to check that

UT(e;x)U = u;x

Therefore, applying , we have that if 2 8 % (T’ ) =10
then

0=(S,u;xR), 1<i<3. (32)

Denote u; = (Uila uig,uig)T, R = (7¢j)1§i’jgg, and X =
diag(o1,02,03). Expanding (32), we arrive at V1 < i < 3

u1(T2303—T3202) +in(T3101—T1303) +uiz(T1202—T2101) =
It follows that
Tij0; = T404, V1 <1< j < 3. (33)
Parameterize R using the axis-angle parameterization
R =cos(0)I3 + (1 — cos(f))an’ +sin(@)mx  (34)

where @ = (71,72,73)7 and § are the rotation axis and
rotation angle respectively.

Substituting (34) into (33)), we obtain

= (0'1 + O’Q)ﬁ:g sm(?) (35)
= (01 + o3)m sin(f) (36)
0

= (0'2 + Ug)ﬁl sin( )

We show that @ = 0. This means R = Isor R = UV,
which ends the proof. Suppose 6 # 0. It follows that 77; #
0,1 < i < 3. Otherwise sin(f) = 0 as max(|m;|) > 0.
When7; # 0,1 <4< 3,wehaveo; # 0;,V1 <i<j<
3. Without losing generahty, we assume o1 > 02 > o03.In
this case, factoring out § in (35) to (36), we have

o2 =01 _ [n3]2(0g + 01)
01 — 03 |ﬁ2|2(0'3+0'1)

(37)

which results in a contradiction as the left side (37) is
negative while its right side is positive.

O

1.4. Proof of Prop. 4

We begin with simplifying the objective function of (15):
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For fixed o and oy, it is clear that the optimal w is given
by

2 2
. 206 \$, 20kt %
w —Z“”“((U2+a2 )) ((a Yo ))
kec; R %kR B Tkt
I R o R0
e z(ogwg,t)e 2(0F+07 4) (39)

Substituting (39) into (38), we have that the optimal o,
and oy are given by

929,02 R 1o L
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1.5. Details on Variance Optimization of (40)

We solve (@0) via alternating maximization, starting
from or = median(o ) and o = median(oy ¢). When
kecj' kECJ

oy 1s fixed, the optimization problem reduces to

max hy, (0R) 41
OR
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Computing the derivative of h,, (o r) with respect to o g,
we can see that o g is a critical point of h,, (og) if
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It is easy to check that (@2) is equivalent to

2
O E Wk,0:Ck,or,1 = E Wk,04Ck,oR,2" (43)
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(@3) leads the following formula for updating o :
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Similarly, when o is fixed, the optimization reduces to

max h,, (0¢) (45)
ot
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Computing the derivative of h,, (0¢) with respect to oy,
we can see that oy is a critical point of h, , (o) if
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Denote
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It is easy to check that (46) is equivalent to

2 E E
O Wk,orCk,0¢,1 = Wk,orCk,0¢,2- (47)

keC; keC;

leads the following formula for updating o:

ot < \/Z WeonChiop2/ P WhopChopt  (48)

kec; kec;

2. More qualitative results over RGB-D
datasets

We provide more results over the ScanNet dataset in
Figure |I| We observe that Step I and Step II can provide
good pose estimations in some of the cases while Step III is
capable of refining results with high noise after Step II.

3. Running time comparison over RGB image
datasets

We provide the running time of all the baseline methods
and ours in Table [I| over the Cornell-Artsquad and San-
francisco dataset. SESync takes over 3 hours on Cornell-
Artsquad and Shonan Rotation Averaging fails to converge
over Cornell-Artsquad.



Ground Truth Ours (Step I + 1) IRLS-LO Ours (Step I + IT + I1I)

Figure 1. Comparison of qualitative results over 5 scenes from ScanNet. Step I and Step II provides accurate pose estimation in Row 2 and
5 while Step III refines the others considerably.

IRLSLO RobustR SDP SESync SFMMRF SHONAN TransSync K-Best Ours
Cornell-Quad 93 1574 50 - 570 - 5323 302 595
San-francisco 161 763 15 335 433 1327 1819 133 243

Table 1. Running time (sec.) comparison of all baselne methods and ours over RGB image datasets.
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