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For clarity, blue characters will be used for referring to sec-
tions and equations in the main paper, while red and
characters refer to tables, equations and citations in this sup-
plementary material.

A. Notation

Table | summarizes the used notation for quick lookup.

B. Continual learning framework

The pseudocode for our learning procedure is presented
in Alg. 1. Following ER [7], the model is trained on a mini-
batch composed of the current task data and replay exam-
ples at each time step. Meanwhile, to reduce the computa-
tional cost imposed by the selection algorithm, the replay
buffer is updated only in the last epoch of each task. For the
settings of hyperparameters, please refer to Sect. 4.1.

C. Derivation of influence functions

As a background introduction, this section provides the
derivation of the first-order influence score Z(z) in Eq. (4),
following the idea by Koh and Liang [10].

It begins with upweighting an interested sample z by an
infinitesimal amount e, after which the perturbed optimal
point ééyz can be written as follows:

f... = arg min Z L(zi,0) 4+ €L(z,6). @)
o z; €Cy

Its first-order optimality condition states that:
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To exploit the known optimal point 6, we apply the first-

order Taylor expansion on the right-hand side:
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Symbol Description

Zy Available data at the ¢-th step

21 Seen data till the ¢-th step

Ct Coreset at the ¢-th step

m Maximum coreset size

L(z,0) Loss of parameter # on sample z

6, Optimal point at the ¢-th step

ée, = Optimal point after z is upweighted by ¢
H, 4 Hessian of ét on coreset C;

H; Hessian of 6, on sample z

St Inverse Hessian-vector product at the ¢-th step

Z(2) Influence of z on the test loss

T () Influence of 2’ after z is upweighted by €
Z®)(z,2')  Second-order influence of z and 2’
AI(Z) Total interference on the influence of 2z’
R(") Our proposed regularizer

Table 1. Notation in the main paper.

Algorithm 1 Learning Procedure for Task 7'

1: Input: Dataset Z of task T, coreset C;—1 from the last round
of selection, the number of epochs ema.x, model parameter 6,
learning rate 7.

: for e = 1 to enax do

for each batch Z; € Z do

Sample a replay batch Be € Ci—1
00—V .czup. L(20)
if e = emax then
Update coreset C; € C:—1 U Z; by Sect. 3.6
t—t+1
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where o(||... — ;|| terms are dropped. It is also assumed
that L is twice-differentiable and convex in 6. Using the
optimality condition ZZi ce, VoL(z;,0;) = 0 and the no-
tation Hy = > ¢, V2L(z;, 0;), it can be simplified to:

Oco — 0y~ H, 'VoL(2,00)c, o))

where o(e) terms are neglected. This yields the derivate of
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do. ..
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Finally, the influence of a particular sample z on the test
loss can be computed by the chain rule:

I(z) _ Z dL(zi,Oe,z)
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D. Derivation of the second-order influence

This section demonstrates the derivation of the second-
order effects Z(?)(z, 2’) in Eq. (8) of Sect. 3.3. Note that
the derivation below applies to Eq. (6) as well, since they
share a similar form.

In that case, the influence score of a subsequent sample
2’ after the previous z is upweighted by e is as follows:

.
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The inverse matrix therein can be effectively approximated
with a Neumann series as € — 0:

(A+eB) ' =A"'I+eBA)!
=AY (—eBATHE ®)
k=0
= A" —eAT'BAT +o(e).

and B = H;

P and substitute into
t+1,%

Take A = Hét+1
Eq. (7), then we get:
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which can be further rearranged into:
T.(2)=— Y VoL(z, ét+1)TH(;i1 VoL(Z,0;41)
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Current coreset gradient ~ Previous coreset gradient

Figure 1. Illustration of two consecutive selection steps based on
influence functions. The latter selection turns out to be non-ideal,
as evidenced by its decision boundary (between high and low den-
sity regions indicated by color intensity) being rotated under the
interference of the previous step on gradient information.
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its derivative w.r.t. € can be written as:
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E. Intuition behind the deviration

To illustrate the physical meaning behind the equations,
this section presents Figure 1 as an intuitive example of the
second-order effects on sample selection.

It is depicted that after two rounds of selection, the sam-
ples are more concentrated in the upper right corner. On a
closer look, the prior selection alters the overall gradient,
thereby distorting the next selection boundary which is in-
herently orthogonal to the gradient (by the inner product
defined in Sect. 3.3). The final result is thus biased and less
diversified.

The illustrated example, which focuses on the drift of
decision boundary due to the deviation in coreset gradient,
is characterized by our first case of second-order influences
in Eq. (6). Complementarily, the disturbance to Hessian-
related information is tackled in the second case of Eq. (8).

F. Comparison with group influences

Our second-order influences have a different origin from
the group influences proposed by Basu er al. [3]. The group
effects [3, 9] in their work arise from the interaction within
a group of reweighted datapoints on the inner objective, so
they are limited to jointly optimized samples. Our second-
order terms, derived from separate analyses of inner and
outer objectives, in contrast, have no such restrictions and
apply to sequentially incoming data.



G. Connection to diversity

This section presents an algebraic view of the connection
between our regularizer and gradient diversity, as a comple-
ment to the geometric perspective in Sect. 3.5.

Let R°(C;) and R¥(C;) denote the regularizers under
the 1+ = 0 and identical Hessian settings, respectively. They
are expressed as:

ROC)=| D VoL(z0:)— > VoL(z0:)|,
z€C_1UZy z€Cy
RYC) = H(l —ap) Y VoL(z,0:) — Y VoL(z,0,)|.
z€Cy_1UZy 2€C¢
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where « is a coefficient related only to the coreset size. The
comparison of the two regularizers yields:

RY(C)? = R°(C)* = (—2ap+ a®p®)|| D VoL(z60:)
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in which the latter term enforces the coreset gradient to be
less aligned with the main gradient. Thus, the regularizer
R(C;) additionally encourages the inclusion of gradients
in other directions and promotes gradient diversity.

H. Taylor expansion of the regularizer

To optimize the new equivalent form of our regularizer
in Eq. (14), we perform a first-order Taylor expansion near
the initial weight wy ;:

R(w) = R(wf) = Y BT (VoL(zi,0:) —

pHy, . s6)(wes — wiy),
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where 3 is a vector independent of w; ;:
(1 —wi;)(VoL(z, 6,) — pHg, . st)
g= > ¢ 902777 (15)

2;€C1_1UZ4 R(wp)
The result is a linear combination of w; ;, and thus can be
minimized with greedy heuristics, i.e., by iteratively setting
the wy ; with the largest coefficient to zero.

I. Additional results

Time cost with Hessian-vector product. The overhead
in evaluating the Hessian-vector product is 0.014+0.001
seconds per step on Split CIFAR-10. This is fairly small
compared to the base cost of 0.368+0.029 seconds per step
for computing first-order influence functions.

Method Class-incremental  Task-incremental
Grad matching 39.56+1.52 @ 88.98+£0.95 ¢
Grad diversity 43.94+2.03 o 87.82£1.38
Vanilla IF 47.09+0.85 90.78+1.21
Ours 52.81+1.26 92.43+1.11

Table 2. Comparison with only gradient regularization, in terms of
ACC (%) on Split CIFAR-10 with m = 500. e indicates signifi-
cant improvement with p-value less than 0.05 in paired t-tests.

Method Class-incremental  Task-incremental
iCaRL [12] 47.87+0.47 o 90.35+1.13
BiC [14] 51.49+1.37 90.9940.78
Ours 52.81+1.26 92.43+1.11
ER-ACE [5] 56.8640.64 o 89.59+3.23
ER-ACE + Ours 60.57+0.93 91.84+0.71

Table 3. Comparison with multi-epoch methods and ER variant in
50-epoch learning. Detailed settings follow Table 2.

Comparison with only gradient regularization. Com-
bination of memory replay with gradient regularization
based approaches can partly bypass the interference issue.
However, it lacks efficiency in buffering the most critical
samples for performance preservation. We verify this point
through the comparisons in Table 2, which empirically justi-
fies the motivation of our proposed influence-based scheme.

Comparison with multi-epoch competitors. Additional
comparisons with the classical multi-epoch methods
iCaRL [12] and BiC [14] are given in Table 3, which con-
firm the edge of our method in 50-epoch learning. Results
are presented with standard deviations.

In combination with ER-ACE. Table 3 further tests
our strategy on the more advanced replay framework ER-
ACE [5] instead of the previously adopted ER [7]. It is
observed that the proposed method combines well with ER-
ACE and yields a 3.71% gain in class-incremental learning.

Additional comparison. To compare with other replay-
based competitors such as OCS [15], GCR [15] and
Bilevel [4], as well as some regularization-based meth-
ods such as Stable SGD [11] and EWC [8], we reimple-
ment our approach using the codebase of OCS. Its frame-
work differs in mainly two aspects: (1) Methods are eval-
uated on two task-incremental benchmarks, including 20-
split CIFAR-100 and a mixture of five datasets from differ-
ent domains. (2) Each learning stage features much fewer
training epochs, so that the resulting ACC will be lower



Split CIFAR-100  Multiple Datasets

Method

ACC (%) BWT ACC (%) BWT
iCaRL [12] 60.3 -0.04 - -
EWC [8] 49.5 -0.48 42.7 -0.28
A-GEM [0] 50.7 -0.19 - -
ER [7] 46.9 -0.21 - -
GSS [2] 59.7 -0.04 60.2 -0.07
ER-MIR [1] 60.2 -0.04 56.9 -0.11
Stable SGD [11] 57.4 -0.07 53.4 -0.16
Bilevel [4] 60.1 -0.04 58.1 -0.08
OCS [15] 60.5 -0.04 61.5 -0.03
GCR [13] 60.9 - - -
Vanilla IF 60.0 -0.05 59.7 -0.07
Ours 61.2 -0.04 61.6 -0.05

Table 4. Comparison with another group of baseline methods in
task-incremental evaluations. The results of most methods come
from the summary in OCS [15], while the result of GCR [13] is
provided in its supplementary material.

than before, while the forgetting metric BWT will be sig-
nificantly better.

As shown in Tab. 4, our approach continues to deliver
considerable improvement over the base strategy Vanilla IF
in new evaluations. Like many replay-based methods, we
outperform regularization-based methods by a large margin.
Furthermore, our method surpasses the top two competi-
tors OCS and GCR in terms of ACC on both benchmarks.
These results once again demonstrate the superiority of our
approach in continual learning.
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