
A. Detailed Proof
In the main paper, we propose to use a project gradient

algorithm to efficiently optimize the hard IRM objective. In
this section, we provide a formal proof composed of two
main steps: (1) We show in Section A.1 that the original
IRM objective is equivalent to the PG-IRM objective shown
in Theorem 1. (2) In Section A.2, we show that the PG-
IRM objective can be efficiently optimized by the project
gradient descent algorithm illustrated in Alg. 2.

A.1. PG-IRM objective is equivalent to IRM
As a recap of our learning setting, a learner is given ac-

cess to a set of training data from E environments E =
{e(1), e(2), .., e(E)} and the IRM objective is the following
constrained optimization problem:

min
�,�⇤

1

|E|
X

e2E
Re(�, �⇤) (11)

s.t. �⇤ 2 arg min
�

Re(�, �) 8e 2 E , (12)

where the risk function for a given domain/distribution e is:

Re(�, �)
.
= E(xi,yi,ei=e)⇠D` (f(xi; �, �), yi) .

Theorem. (Recap of Theorem 1) For all ↵ 2 (0, 1), the
IRM objective is equivalent to the following objective:

min
�,�

e(1) ,...,�
e(E)

1

|E|
X

e2E
Re(�, �e) (13)

s.t. 8e 2 E , 9�e 2 ⌦e(�), �e 2 ⌥↵(�e), (14)

where the parametric constrained set for each environment
is simplified as

⌦e(�) = arg min
�

Re(�, �),

and we define

⌥↵(�e) = {�| min
8e02E\e,�e0 2⌦e0 (�)

k� � �e0k2

 ↵ min
8e02E\e,�e0 2⌦e0 (�)

k�e � �e0k2}
(15)

Proof. The constraint (12) means that the �⇤ is the optimal
linear classifier at all environments, which is equivalent to
saying that �⇤ lies in the joint of the optimal solution set
in each environment. Equivalently, we can formularize the
optimization target (11) as a parametric constrained opti-
mization problem with constrain:

�⇤ 2 \
e2E

⌦e(�) , (16)

arg min
�

Re(�, �)

where the parametric constrained set for each environ-
ment is ⌦e(�) = arg min

�
Re(�, �) (Note that ⌦e(�) can be

a set with cardinality bigger than 1, since the optimal linear
classifier may not be unique). The constraint (16) implies
that �⇤ lies in the joint set of ⌦e(�), which also means that
there is an element in each ⌦e(�) equal to �⇤. We refer to
such element to be �e 2 ⌦e(�), and we have the alternative
form:

8e 2 E , 9�e 2 ⌦e(�), �⇤ = �e (17)

Equivalently,

8e 2 E , 9�e 2 ⌦e(�), �e 2 \
e02E\e

⌦e0(�) (18)

by (16) and (17)

The interpretation of constraint (18) is that — for all en-
vironments, there is a hyperplane in the optimal set ⌦e(�)
that also lies in the intersection of other environments’ op-
timal set ( \

e02E\e
⌦e0(�)). Now we rewrite the optimization

target (3) as:

min
�,�

e(1) ,...,�eE

1

|E|
X

e2E
Re(�, �e) (19)

s.t. 8e 2 E , 9�e 2 ⌦e(�), �e 2 \
e02E\e

⌦e0(�) (20)

In this way, we can get rid of finding a unique �⇤, but
instead optimizing multiple linear classifiers �e(1) , ..., �eE ,
which is easier to optimize in a relaxed form as we will
show next.

One key challenge for this optimization problem is that
there is no guarantee that \

e02E\e
⌦e0(�) is non-empty for a

feature extractor � and �e. We therefore relax the optimiza-
tion target as:

min
�,✏,�

e(1) ,...,�eE

1

|E|
X

e2E
Re(�, �e) (21)

s.t. 8e 2 E , 9�e 2 ⌦e(�), max
e02E\e

k�e � ⌦e0(�)k2  ✏ ,

(22)relax �e 2 \
e02E\e

⌦e0(�)

where we define the l2 distance between a vector � and
a set ⌦ as : k� � ⌦k2 = min

�2⌦
k� � �k2.

Practically, ✏ can be set to be any variable converging to 0
during the optimization stage. Without losing the generality,
we change the constraint (22) to the following form:

8e 2 E , 9�e 2 ⌦e(�),

max
e02E\e

min
�e0 2⌦e0 (�)

k�e � �e0k2 

↵ max
e02E\e

min
�e0 2⌦e0 (�)

k�e � �e0k2,

(23)
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where ↵ 2 (0, 1). Note that constraint (23) will be sat-
isfied only when max

e02E\e
min

�e0 2⌦e0 (�)
k�e � �e0k2 = 0. There-

fore, constraint (23) is equivalent to constraint (18), and
thus equivalent to the original constraint (12).

If we let the set

⌥↵(�e) = {�| max
e02E\e

min
�e0 2⌦e0 (�)

k� � �e0k2

 ↵ max
e02E\e

min
�e0 2⌦e0 (�)

k�e � �e0k2}
(24)

Then the constraint (23) can be simplified to

8e 2 E , 9�e 2 ⌦e(�), �e 2 ⌥↵(�e) (25)

A.2. Projected Gradient Optimization for PG-IRM
objective

We proceed with introducing how the Projected Gradient
Descent can effectively optimize the PG-IRM objective. We
start by introducing the background of the Projected Gradi-
ent Descent algorithm.

Projected Gradient Descent is commonly applied in con-
strained optimization, which aims to find a point ✓ achiev-
ing the smallest value of some loss function L subject to the

requirement that ✓ is contained in the feasible set ⌦. For-
mally, the objective can be written as:

min
✓2⌦

L(✓)

If we minimize the objective L(✓) by gradient descent,
we have

(GD) ✓ := ✓ � �rL(✓),

where � is the step size. However, it is not guaranteed that
the updated ✓ still falls into the set ⌦. The projected gradient
descent (PGD) algorithm is designed to project the solution
back in the feasible set. Formally,

(PGD) ✓ := P⌦(✓ � �rL(✓)),

where the P⌦(·) is defined as the Euclidean Projection:

P⌦(u) = arg min
v2⌦

ku � vk2

In the PG-IRM objective, we have the constraint set
⌦ = ⌥↵(�e), we show in the next Lemma 2 that the Eu-
clidean Projection from �e to ⌥↵(�e) is equivalent to the
linear interpolation between �e and the farthest hyperplane
�ē for environment ē.

Lemma 2. Given that



Algorithm 2 PG-IRM
Initialize �, �e(1) , ..., �e(E) , learning rate �, alignment pa-
rameter ↵, alignment starting epoch Ta.
for t in 0, 1, ..., do

Run forward pass and calculate the gradient.
for e 2 E do

�̃t+1
e = �t

e � �r�t
e
LPG-IRM

↵0 := 1 � 1t>Ta(1 � ↵)
select �t

ē with ē = argmax
e02E\e

k�̃t+1
e � �t

e0k2

�t+1
e = ↵0�̃t+1

e + (1 � ↵0)�t
ē

end for
Update �t+1 = �t � �r�tLPG-IRM.

end for

⌥↵(�e) = {�| max
e02E\e

min
�e0 2⌦e0 (�)

k� � �e0k2

 ↵ max
e02E\e

min
�e0 2⌦e0 (�)

k�e � �e0k2}

We have:

P⌥↵(�e)(�e) = ↵�e + (1 � ↵)�ē,

where �ē is selected with ē = argmax
e02E\e

k�e � �e0k2.

Proof. We give the proof in an intuitive way shown in Fig-
ure 9. Specifically, the feasible region ⌥↵(�e) can be re-
garded as an intersection of several hyper-spheres centered
with all domain-wise live-vs-spoof hyperplanes �e0 . The
radius is given by the ↵ multiplying the distance to the far-
thest hyperplane �ē. Therefore the Euclidean projection of
�e to the feasible set simultaneously lies on the surface of
the hypersphere and the line segments between �e and �ē.
It can be easily verified that

P⌥↵(�e)(�e) = ↵�e + (1 � ↵)�ē,

satisfies the given criteria.
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�ē
<latexit sha1_base64="1EvDMbJ0ukHU+SVPDfJrfJDNq1o=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9Vj04rGC/cA2lM120i7dbMLuRiih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LBjBP0IzqQPOSMGis9dgM0tJfh2aRXKrsVdwayTLyclCFHvVf66vZjlkYoDRNU647nJsbPqDKcCZwUu6nGhLIRHWDHUkkj1H42u3hCTq3SJ2GsbElDZurviYxGWo+jwHZG1Az1ojcV//M6qQmv/YzLJDUo2XxRmApiYjJ9n/S5QmbE2BLKFLe3EjakijJjQyraELzFl5dJ86LiXVaq99Vy7SaPowDHcALn4MEV1OAO6tAABhKe4RXeHO28OO/Ox7x1xclnjuAPnM8faXKQwg==</latexit>

�e0

Figure 9. Illustration of the Euclidean projection results (solid
black dot) to the feasible set ⌥↵ (�e).

Main results. When we have the projected form on the
constraint set, deriving the optimization strategy is thus
straightforward. As shown in Alg. 2, we first calculate the
gradient of hyperplanes for all domains

�̃t+1
e = �t

e � �r�t
e
LPG-IRM.

We then select the farthest domain-wise hyperplanes �ē

from other environments. The final projection results are
thus given by

�t+1
e = ↵0�t+1

e + (1 � ↵0) �ē,

as we demonstrated in Lemma 2.

Remark on the Ta. In the first Ta epochs, we let the fea-
ture encoder � and domain-wise hyperplanes �e trained in a
standard way. The goal is to ensure that the hyperplanes �e

will reach or be close to the minimum of the domain-wise
empirical risk, and we have:

�e 2 ⌦e(�).

In Alg. 2, we use an additional parameter ↵0 to manifest this
procedure:

↵0 := 1 � 1t>Ta(1 � ↵)

Specifically, when t < Ta, ↵0 = 1, which means the orig-
inal gradient descent algorithm is applied. When t < Ta,
alpha0 = ↵, the projected gradient descent takes charge.

B. Why do we need a fair setting?
By visualizing the line plot of the HTER performance

over 100 training epochs in Fig. 10, we realize the test per-
formance on the unseen domain is highly testset-dependent
and unstable especially in the early epochs. Therefore, the
best number reported commonly adopted in existing liter-
ature [30, 66, 72] usually happens in an unpredictable ear-
lier epoch. Such “best” snapshot is also hard to be selected
by validation strategy because we have zero information re-
garding the test domain. As an alternative, we noticed that
the test performance is more stable in the last 10 epochs
upon convergence, which motivates us to propose using a
fairer comparison strategy introduced in Section 4.

C. Convergence of PG-IRM
Recall that in PG-IRM, we optimize multiple linear clas-

sifiers simultaneously �e(1) , �e(2) , �e(3) and gradually align
them during training. In this section, we would like to ver-
ify if PG-IRM indeed regularizes domain classifiers to be
close to each other and finally converges to the same one
�⇤ = �e(1) = �e(2) = �e(3) . Empirically, we use the aver-
aged cosine distance between domain classifiers to measure
the distance between them:



HT
ER

Training Epochs

H
TE

R

Training Epochs

SSDG-R (OCI->M) SA-FAS (OCI->M)

Figure 10. The line plot of the HTER performance tested on MSU
dataset when trained on CASIA, Replay and OULU with SSDG-
R [30] and SA-FAS over 100 training epochs.

Scos = Ee,e02E,e6=e0 [cos(�e, �e0)]

As shown in Fig. 11, the averaged cosine value between
domain classifiers diminishes gradually and finally con-
verges to 1, which suggests that they converge to a �⇤ that
is aligned for all domains.

Training Epochs

Figure 11. The line plot of the Scos when trained on CASIA,
Replay and OULU with PG-IRM over 100 training epochs.

D. Sensitivity Analysis
In this section, we perform the sensitivity analysis of

hyper-parameter settings for SA-FAS in Fig. 12. The
performance comparison in the bar plot for each hyper-
parameter is reported by fixing other hyper-parameters. In
the figure, we observe that the performance of SA-FAS is
less sensitive to the learning rate and the alignment start-
ing epoch compared with the maximum gap of 1.2% in the
given range. We also notice that choosing the right align-
ment parameter ↵ is more important, since a proper ↵ en-
sures the domain-wise decision boundaries are aligned not
too fast and not too slow. In the extreme case, if ↵ = 0, it
degenerates to the ERM after epoch Ta and if ↵ = 1, the
domain-wise boundaries will never get aligned with each
other. In summary, our algorithm does not require heavy

hyper-parameter tuning as long as it falls into a reasonable
range.

E. Limitation
Our work has two limitations. Firstly, our framework

assumes the dataset collected from each domain contains
both live and spoof data. For example, SA-FAS can not
handle the training data with live samples only from domain
A and spoof samples only from domain B. Secondly, SA-
FAS may cause extra computation costs when the domain
amount is very large since we set up one hyperplane for
each domain.



Figure 12. Sensitivity analysis of hyper-parameters: learning rate �, alignment parameter ↵, alignment starting epoch Ta. The HTER is
reported on the mean performance based on the last 10 epochs. The middle bar in each plot corresponds to the hyperparameter value used
in our main experiments.
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Figure 13. Correlation between the test performance AUC and two properties measure. Each dot represents one snap-shot during the
training stage in four cross-domain settings.
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