
A. CLIP Backdoor [7]

Figure 11. An image with a 16× 16 backdoor used in [7].

CLIP Backdoor [7] demonstrated a backdoor attack on
a multimodal contrastive model CLIP [33]. It uses a patch
backdoor: a 16×16 grid of black and white pixels. We train
a backdoored CLIP following the steps described in [7]. We
visualize a sample backdoored image in Figure 11. The
backdoored CLIP model we trained has a backdoor ASR of
99.99%. We then cast this CLIP model as a standard image
classifier in a zero-shot manner and apply SmoothInv w/o
diffusion only (due to limited computation resources). We
test this on 10 random clean images from ImageNet testset
and the average ASRs of the reversed backdoors are 73.16%
for (ϵ = 5) and 93.51% for (ϵ = 10). We show the reversed
backdoored images in Figure 12. We can see that some pat-
terns with high color contrast appear in the top-left part.

B. Limitations
One major limitation of SmoothInv is that it does not

generalize to more advanced backdoors. In this work,
we consider patch-based backdoor in particular. However,
other forms of backdoor are shown possible by previous
work, e.g. image wrapping [27], adaptive imperceptible
perturbation [48] and instagram filters [16]. Our method
does not apply to those backdoors and we believe the likely
reason is that ℓ2 based perturbations are only suitable for
reversing patch-based backdoors. For advanced backdoors,
we suspect that one would need to design the perturbation
space of SmoothInv more carefully. For instance, we can
model instagram filters with a per-pixel position-dependent
transformation implemented by a neural network [20]. It
would be interesting future work to extend our approach
beyond patch based backdoors.

C. Runtime and Resource Considerations
The major time bottleneck of our approach SmoothInv

comes from back-propagating through the smoothed clas-
sifier Gb. SmoothInv w/o diffusion is generally fast as dif-
fusion model is not involved. Here we mainly study the
resource consumption of SmoothInv w/ diffusion. First we

Figure 12. SmoothInv on a backdoored CLIP model.

would like to clarify that for SmoothInv w/ diffusion, we
are not using the full standard reverse diffusion process but
the one-shot denoising approach proposed in [8], where we
apply only one diffusion step to obtain an estimate of the
denoised image. All our experiments were run on four RTX
A6000 GPU machines with 48685MiB GPU memory each.
In Table 4, we report the time to synthesize an image us-
ing SmoothInv with various number of noise vectors N .
We compare with the baseline “Standard” where we back-
propagate through the standard base classifier (ResNet-18).
We can see that the time spent scales linearly with the
number of noisy vectors. In our experiments, we find that
N = 10 noise vectors are usually enough for a stable syn-
thesis result. In this case, SmoothInv takes roughly around
5 mins to synthesize one backdoored image in one GPU. It
would be interesting future work to investigate methods to
speedup our synthesis process when a diffusion denoiser is
used.

Standard N = 1 N = 5 N = 10 N = 20 N = 40

#GPUs 1 1 1 1 2 4
Time/sec 9.00 103.04 344.61 339.82 691.79 1014.72

Table 4. Time (in seconds) and resource taken to synthesize an
image (400 PGD iterations) for SmoothInv w/ diffusion. We report
the results with different number of noisy samples N . “Standard”
corresponds to the PlainAdv baseline.



Algorithm 1 SmoothInv (PyTorch-style)

# model: the backdoored classifier
# diffusion: class-unconditional diffusion model
# x_orig: a single clean image from victim class
# y_t: target class
# delta: perturbation vector δ to be optimized
# sigma: noise level σ for RS procedure [8,10]
# n: number of Monte Carlo noise samples
# eps, alpha, steps: PGD hyper-parameters

def backdoor_tracing(f, diffusion, x_orig, y_t):
for _ in range(steps):

x = x_orig + delta
x_n = x.repeat(n,1,1,1)
x_noise = x_n + torch.randn_like(x_n) *

sigma # add isotropic Gaussian noise

x_denoised = diffusion.denoise(x_noise) #
optional

y_prob = model(x_denoised)
y_est = y_prob.mean(dim=0) # estimated

output of the smoothed classifier

loss = criterion(y_est, y_t)
loss.backward()

delta += alpha * l2_normalize(delta.grad)
delta = project(delta, eps)
delta.grad.zero()

return x_orig + delta

D. Additional Visualization Results

In Figure 16, we show some backdoored images with
the true backdoors listed in Table 2. Notice that for Blind-P
and Blind-S, the backdoors are placed in the top left region
of the images (the injected backdoor may be hard to identify
unless zooming in the specific part).

We provide a comparison of SmoothInv w/ diffusion and
w/o diffusion in Figure 13. We can see that for TrojAI,
SmoothInv w/o diffusion tends to generate more regions of
interest on the background while the synthesized patterns
appear more often in the foreground for SmoothInv w/ dif-
fusion. For HTBA, SmoothInv w/o diffusion tends to have
vague artifacts while the backdoor patterns are more distinc-
tive for SmoothInv w/ diffusion. This suggests that while
SmoothInv w/o diffusion may generate more effective back-
doors, but using a diffusion denoiser may lead to better vi-
sualization results.

We include more visualization results (ϵ = 10) on the
Blind-P and Blind-S models in Figure 14 and Figure 15,
where we show the synthesized images under various noise
level σ ∈ {0.25, 0.50, 1.00}. We find no distinction be-
tween w/ diffusion and w/o diffusion visually so here we
show the results of SmoothInv w/o diffusion for these two
models. We can see that in general, smoothed classifiers
constructed with larger noise levels tend to give better visu-
alization results.

E. Pseudo-code
We provide a PyTorch-style pseudo-code for our ap-

proach SmoothInv in Algorithm 1, where we apply pro-
jected gradient descent [25] to synthesize backdoored pat-
terns given a single image. We use a pre-trained diffusion
model to build a robust smoothed classifier, following [8].

F. Sanity Check
Following the initial sanity check result in Figure 4, we

report the results on all four backdoored classifiers in Ta-
ble 5. We show both the clean accuracy and backdoor ASR
of the smoothed classifiers w/ and w/o diffusion. We can
see that using a diffusion denoiser can significantly improve
the clean accuracy of the resulting smoothed classifiers for
all four backdoored classifiers. For backdoor ASR, we can
see that the backdoor remains effective for smoothed clas-
sifiers both w/ and w/o diffusion for some values of noise
level σ. Note that for TrojAI, the results should have large
variance as only five clean images are provided by the data
publisher.



(a) TrojAI-R4-131 (b) HTBA

Figure 13. Comparison of SmoothInv w/ diffusion and w/o diffusion (ϵ = 10).



Figure 14. Additional results on the Blind-P model.



Figure 15. Additional results on the Blind-S model.



Figure 16. Backdoored images, from top to bottom: polygon/TrojAI, square/HTBA, pattern backdoor/Blind-P and single pixel/Blind-S.



Model Diffusion 0.00 0.12 0.25 0.50 1.00

TrojAI
✗ 100.00% 100.00% 80.00% 20.00% 0.00%
✓ 100.00% 100.00% 100.00% 100.00% 100.00%

HTBA
✗ 95.00% 2.00% 0.00% 0.00% 0.00%
✓ 95.00% 90.00% 92.00% 98.00% 96.00%

Blind-P
✗ 69.26% 33.40% 2.80% 0.00% 0.00%
✓ 69.26% 66.10% 63.10% 57.70% 47.10%

Blind-S
✗ 68.06% 29.90% 2.30% 0.10% 0.10%
✓ 68.06% 65.60% 62.30% 56.70% 47.80%

(a) Clean Accuracy

Model Diffusion 0.00 0.12 0.25 0.50 1.00

TrojAI
✗ 100.00% 100.00% 40.00% 40.00% 20.00%
✓ 100.00% 100.00% 100.00% 60.00% 40.00%

HTBA
✗ 54.00% 70.00% 100.00% 100.00% 100.00%
✓ 54.00% 64.00% 58.00% 64.00% 48.00%

Blind-P
✗ 99.29% 99.80% 94.90% 40.10% 4.70%
✓ 99.29% 99.40% 87.70% 1.70% 0.10%

Blind-S
✗ 79.73% 89.60% 88.40 % 81.70% 97.00%
✓ 79.73% 59.20% 21.50% 4.00% 0.00%

(b) Backdoor ASR

Table 5. Clean accuracy and backdoor ASR of the smoothed classifiers (w/ and w/o diffusion) with various values of σ: 0.12, 0.25, 0.50
and 1.00. The σ = 0 column corresponds to the results of the base backdoored classifier. The results on TrojAI are computed on a limited
number of 5 available clean images so they should have high variances.


