TRACE: 5D Temporal Regression of Avatars
with Dynamic Cameras in 3D Environments
**Supplementary Material**

1. Introduction

In this supplemental document, we provide more im-
plementation details and discuss the limitation of TRACE.
Please refer to the supplemental video for more qualitative
results and video sequences.

2. Implementation Details

In this section, we introduce the details of our image loss
functions, temporal feature propagation module, inference
and training details, and dataset details.

2.1. Loss Functions

Except for the temporal motion losses we introduced in
the main paper, we also follow previous work [9, 15, 16] to
supervise the estimated maps and SMPL parameters with
standard image losses. L., is the focal loss [15] of the es-
timated 3D Center map. We also supervise the focal loss of
the 2D Body Center heatmap, which is used for BEV-based
3D composition of the 3D Center map. The SMPL param-
eter loss L, consists of four parts, Lg, L3, Lpyrior, and
Ly. Lo and Lg are L losses on SMPL pose 6 and shape
3 parameters respectively. In the first 20 epochs of training,
we also employ the Mixture of Gaussian pose prior [2, | 1],
L,rior, to penalize the unreasonable poses 6.

The 3D body keypoint loss L y consists of 3 parts, L.,
Lompj, and Ly 0q. Lp; is the Ly loss of 3D body key-
points J. Following [15-17], we employ L, to alleviate
the domain gap between training datasets, which is the Lo
loss of the predicted 3D body keypoints J after Procrustes
alignment with the ground truth. We also employ £,j24 to
learn from 2D pose datasets, which is the Ly loss of the 2D
projection J2p of 3D joints J using predicted 3D position
tAi in camera coordinates.

2.2. Temporal Feature Propagation Module

To extract long-term and short-term motion features,
we construct a temporal feature propagation module by
combining a ConvGRU [18] module, a Deformable con-
volution [23] module, and a residual connection. Inspired

by [18], we employ a ConvGRU module to hold the long-
term memory within a hidden state H,_; and progressively
update the memory with image feature map F'; to generate
the new hidden state H ;. Inspired by [1], to extract short-
term motion features, we use F'; — F';_; to generate the
feature sampling offset for Deformable convolution to pro-
cess F';. With these modules, we progressively fuse the im-
age feature maps (F';_1, F';) to generate a temporal image
feature map F'..

During inference, we sequentially process every clip of
a video sequence. With a GRU-based temporal propagation
module, the size of the video clips can be flexibly set.

2.3. Inference and Training Details

Inference details. The input images are resized to 512 x
512. The size of output maps is D = 64, H = 128, W =
128, C' = 128. The hyper-parameters of the memory unit
are set to A, = 0.05, \; = 0.13, g = 0.05,\,,, = 1, W =
(1.2,2.5,25), Ay = 100. Following [10, 15, 16], we adopt
the 6D representation [22] for SMPL pose parameters 6.
To improve the temporal smoothness, we also employ the
One-Euro filter [3] to process the estimated SMPL pose pa-
rameters and 3D trajectories t,T.

Training details. The confidence threshold of the Body
Center heatmap is 0.12. The sampling ratios of differ-
ent datasets are 18% Human3.6M [6], 20% MPI-INF-
3DHP [13], 14% 3DPW [19], 12% PennAction [20], 16%
PoseTrack [4], 20% DynaCam. w) denotes the corre-
sponding weight of all loss items. We set these loss
weights to w,, = 300, wyw = 100, Wy,p; = 300, wem, =

100, Wymp; = 260, wpjoq = 300, wyrior = 1.6,wp5 =
80, wg = 60.
2.4. Dataset Details

In this section, we introduce the details of used
datasets. First, we introduce the 3D human pose datasets,
3DPW [19], Dyna3DPW [19], Human3.6M [6], and MPI-
INF-3DHP [13].

3DPW is a multi-person in-the-wild video dataset.
Videos in 3DPW are captured by tracking subjects with
a dynamic camera to record their daily activities, which



Sequence Name Frame Ranges
downtown_warmWelcome_00 0-588
downtown_weeklyMarket_00 0-1192
downtown_bus_00 0-800
office_phoneCall_00 0-879
downtown_walkBridge 01 156-1371
downtown_runForBus_01 300-485
downtown_sitOnStairs_00 84-918
downtown_bar_00 66-256
downtown_cafe_00 128-736
downtown_enterShop_00 0-1448
downtown_rampAndStairs_00 0-219
downtown_runForBus_00 88-350
downtown_windowShopping_00 | 0-1750
downtown_crossStreets_00 152-587
downtown_car_00 0-576
downtown_walking_00 0-1386

Table 1. Video sequences of Dyna3DPW.

matches our task. 3DPW contains rich human activities,
such as shopping in market, running for the bus, walking
on crowded bridge, and working in an office. 3DPW pro-
vide accurate 3D human pose and mesh annotations of the
tracked subjects. Note that only the one or two subjects are
labeled and all other people appearing in the images are not
Since the global trajectory annotations are not accurate, we
evaluate the 3D human pose and shape estimation on the
test set of 3DPW.

Dyna3DPW is a subset of 3DPW test set that we con-
structed. Not all 3DPW videos have complete tracking an-
notations due to occlusion. Consequently, we select the 16
video sequences in Tab. | that are complete and call this
subset Dyna3DPW. There are many challenging scenes in
Dyna3DPW, such as pedestrians walking past the camera,
occlusion between tracked subjects, object occlusion, trun-
cation, and sudden changes of direction. We use this chal-
lenging subset to evaluate tracking and HPS accuracy in
complex scenes with a moving camera.

Human3.6M [6] and MPI-INF-3DHP [|2] are single-
person 3D pose video datasets. They are captured in con-
strained experimental environments using static multi-view
cameras. They provides 3D pose annotations for each
frame. We sample every 5 frames to reduce redundancy.
We use their training set for training.

We also use two 2D human pose datasets, PennAc-
tion [21] and PoseTrack [4]. PennAction contains 2326
video sequences of 15 different actions. Most videos in Pen-
nAction contain only a single person with 2D pose annota-
tions. Part of videos containing multiple people while only
a specific subject has 2D pose annotations. PoseTrack is an
in-the-wild 2D video dataset for multi-person pose tracking.
It contains 763 video sequences and provides 2D pose and

HMR [0] CRMH[/] ROMP[15] TRACE
56.8 52.7 50.2 42.0

Table 2. Comparisons on Human3.6M using Protocol 2 of
HMR [9] in PAMPIJPE.

CRMH [7] ROMP [I15] Pose2UV [5] TRACE
102.6 72.0 69.5 38.2

Table 3. Comparisons on 3DMPB [5] in PAMPJPE.

ID switches MOTA IDF1 HOTA
1 96.1 98.0 64.8

Table 4. Tracking results on CMU Panoptic [&].

ID annotations. We use these for training.

3. Experiments with Static Cameras

As a sanity check, we also evaluate the 3D human pose
estimation and tracking with static cameras. On indoor Hu-
man3.6M, we follow the evaluation protocol 2 of HMR [9].
As results shown in Tab. 2, compared with previous SOTA
methos, TRACE achieves comparable results. On in-the-
wild 3DMPB [5], we follow Pose2UV [5] to report PAM-
PJPE in Tab. 3 and achieve new SOTA results. We evalu-
ate tracking on severe occlusion scenes from CMU Panop-
tic [8], selected by CRMH [7]. As shown in Tab. 4, TRACE
achieves promising results. These results testify the perfor-
mance of TRACE with static cameras.

Runtime efficiency. TRACE runs at 32.2 FPS on
MuPoTS while using 6.9GB of memory on a 4090 GPU.
TRACE takes 174.1G FLOPs, which includes the image
backbone, motion backbone, and heads, accounting for
41.0G, 66.4G, and 66.7G, respectively.

4. More Ablation Studies

Memory unit. Without the memory unit, on
MuPoTS/Dyna3DPW, ID switches increase 31/94
and MOTA, IDF1, and HOTA decreases 6.5%/11.1%,
12.0%/49.1%, and 8.0%/39.6% respectively. These results
demonstrate that the memory unit is an essential module
for persistent tracking under occlusion. It enables that
the predicted 3D motion offset can associate the occluded
objects in memory with new detections.

Backbones. To enable end-to-end 5D Representation
Learning (SDRL), we develop Temporal Feature Propa-
gation (TFP) as a differentiable path for modeling tem-
poral image features. On 3DPW, 5SDRL with TFP only
(w/o the optical flow from the motion backbone) outper-
forms BEV [16] by 18.1% in terms of PAMPJPE (38.4mm).
Simultaneously learning temporal motion features from
the motion backbone further reduces PAMPJPE by 1.6%
(37.8mm).



5. Discussion of Limitations

As ours is the first method to perform one-stage global
3D human motion and trajectory estimation from videos
captured by dynamic cameras, TRACE has some limita-
tions that could be further explored in future work.

Due to the lack of training data for this task, we make
restrictive assumptions to facilitate effective training. For
example, we assume all videos are captured by a camera
with fixed field of view (FOV=50 degree), without shot
changes [14]. Additionally, due to the low diversity of hu-
man body shapes in the training datasets, 3D human body
shape estimation is limited. Collecting or synthesizing a
new dataset with sufficient diversity in camera and human
body shape could potentially solve these problems. We also
assume the camera coordinate of the first frame of a input
video as the world coordinates. Future work should work
on estimating the camera poses (e.g. pitch, yaw, and roll)
from the monocular video to convert the results of TRACE
to the real world coordinates. Here we focused on the prob-
lem of tracking specific subjects that are specified in the
first frame. Our method, like BEV [16], actually finds all
the people in the image but the tracking branch filters out
all but the subjects. Future work should explore extending
TRACE to track everyone in the scene.

References

[1] Gedas Bertasius, Christoph Feichtenhofer, Du Tran, Jianbo
Shi, and Lorenzo Torresani. Learning temporal pose estima-
tion from sparsely-labeled videos. NeulPS, 2019.

[2] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J Black. Keep it SMPL.:
Automatic estimation of 3D human pose and shape from a
single image. In ECCV, pages 561-578, 2016.

[3] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 1€ filter:
a simple speed-based low-pass filter for noisy input in in-
teractive systems. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 2527-2530,
2012.

[4] Andreas Doering, Di Chen, Shanshan Zhang, Bernt Schiele,
and Juergen Gall. Posetrack21: A dataset for person search,
multi-object tracking and multi-person pose tracking. In
CVPR, pages 20963-20972, 2022.

[5] Buzhen Huang, Tianshu Zhang, and Yangang Wang.
Pose2UV: Single-Shot Multiperson Mesh Recovery With
Deep UV Prior. TIP, 2022.

[6] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6M: Large scale datasets and predic-
tive methods for 3D human sensing in natural environments.
TPAMI, 36(7):1325-1339, 2013.

[71 Wen Jiang, Nikos Kolotouros, Georgios Pavlakos, Xiaowei
Zhou, and Kostas Daniilidis. Coherent reconstruction of
multiple humans from a single image. In CVPR, pages 5579—
5588, 2020.

[8] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe,
Tain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

Sheikh. Panoptic Studio: A massively multiview system for
social motion capture. In ICCV, pages 3334-3342, 2015.
Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In CVPR, pages 7122-7131, 2018.

Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and
Kostas Daniilidis. Learning to reconstruct 3D human pose
and shape via model-fitting in the loop. In ICCV, pages
2252-2261, 2019.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: A skinned multi-
person linear model. TOG, 34(6):1-16, 2015.

Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian
Theobalt. Monocular 3D human pose estimation in the wild
using improved cnn supervision. In 3DV, 2017.

Dushyant Mehta, Oleksandr Sotnychenko, Franziska
Mueller, Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll,
and Christian Theobalt. Single-shot multi-person 3d pose
estimation from monocular rgb. In 3DV, pages 120-130,
2018.

Georgios Pavlakos, Ethan Weber, Matthew Tancik, and
Angjoo Kanazawa. The one where they reconstructed 3d
humans and environments in tv shows. In ECCV, 2022.

Yu Sun, Qian Bao, Wu Liu, Yili Fu, Michael J Black, and
Tao Mei. Monocular, one-stage, regression of multiple 3d
people. In ICCV, pages 1117911188, 2021.

Yu Sun, Wu Liu, Qian Bao, Yili Fu, Tao Mei, and Michael J
Black. Putting people in their place: Monocular regression
of 3d people in depth. In CVPR, pages 13243-13252, 2022.
Yu Sun, Yun Ye, Wu Liu, Wenpeng Gao, YiLi Fu, and Tao
Mei. Human mesh recovery from monocular images via a
skeleton-disentangled representation. In /CCV, pages 5348—
5357, 2019.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, pages 402419, 2020.
Timo von Marcard, Roberto Henschel, Michael Black, Bodo
Rosenhahn, and Gerard Pons-Moll. Recovering accurate 3D
human pose in the wild using imus and a moving camera. In
ECCV, pages 601-617, 2018.

Weiyu Zhang, Menglong Zhu, and Konstantinos G Derpanis.
From actemes to action: A strongly-supervised representa-
tion for detailed action understanding. In /CCV, 2013.
Weiyu Zhang, Menglong Zhu, and Konstantinos G Derpa-
nis. From actemes to action: A strongly-supervised repre-
sentation for detailed action understanding. In ICCV, pages
2248-2255, 2013.

Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li
Hao. On the continuity of rotation representations in neural
networks. In CVPR, pages 5745-5753, 2019.

Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 9308-9316, 2019.



	. Introduction
	. Implementation Details
	. Loss Functions
	. Temporal Feature Propagation Module
	. Inference and Training Details
	. Dataset Details

	. Experiments with Static Cameras
	. More Ablation Studies
	. Discussion of Limitations

