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1. Datasets

To enhance research on natural image matting and hu-
man matting, previous works have contributed several valu-
able datasets. Table 1 summarizes these publicly avail-
able matting datasets. Existing datasets suffer from limited
quantity [14,17,20], low resolution [1,17,20] or highly im-
balance of human landmark (e.g., upper bodies only) [1].
Thus, in this paper we collect an ultrahigh-resolution hu-
man matting dataset, including a training set HHM50K and
a testing set HHM2K, with some visual examples in Fig-
ure 1 and a distribution in Figure 2.

Collection. We collect a large number of high-resolution
human images from the Internet, including Google1 [3],
Pexels2 [4] and YFCC100M [19]. To generate alpha an-
notations, we apply the following pipeline. First a trimap-
free matting method [9] is used to extract coarse alphas and
thus automatic trimaps can be obtained from dilating these
resulting coarse alphas. Afterward, a trimap-based matting
method [7] is applied twice to refine alpha mattes. Finally,
we use Photoshop to further refine the machine-labeled al-
pha mattes to meet the high benchmark quality requirement.

In addition, we include images from several public hu-
man segmentation datasets [2, 5, 6, 16, 17, 21] for enriching
our training samples. However, some of their images are of
low resolution. We first upgrade the quality of their images
by applying denoising and state-of-the-art super-solution
methods. Then we follow the aforementioned pipeline to
obtain high-quality annotations for these images instead of
using the original low-resolution annotations.

To guarantee the quality of machine-labeled alpha mat-
tes, we manually inspect and correct the generated matte
samples. Finally, our dataset is composed of 50,000 train-
ing images and 2,000 testing images with a distribution in
Figure 2.

Experiments. Table 2 shows the quantitative results of our
model, trained on the existing public matting datasets and
our HHM50K. We build the synthetic dataset by selecting
all human images (465) from AIM and D646 datasets as

1For internet images, refer to the Fair Use Act which “allows lim-
ited use of copyrighted material without requiring permission from the
rights holders, such as for commentary, criticism, news reporting, research,
teaching or scholarship.”

2Pexels endorses free usage of all images.

Train Number Average Resolution
AIM [20] 431 1049⇥ 1257
D646 [14] 596 1762⇥ 1581
DPM [17] 2,000 800⇥ 600
AISegment [1] 34,425 800⇥ 600
HHM50K 50,000 3100⇥ 3260

Test Number Average Resolution
AIM [20] 50 1381⇥ 1656
D646 [14] 50 1362⇥ 1477
PhotoMatte85 [10] 85 3456⇥ 2304
PPM100 [9] 100 2875⇥ 2997
RWP636 [22] 636 1327⇥ 1038
HHM2K 2,000 4040⇥ 3570

Table 1. Comparisons with existing matting datasets.

Method HHM2K
MAD MSE Grad Conn

Ours ‡ 62.42 52.09 4.38 61.62
Ours 7.90 4.29 1.96 7.19

Method AIM-Human
MAD MSE Grad Conn

Ours ‡ 31.94 23.64 11.81 31.30
Ours 16.47 9.18 9.85 15.38

Table 2. Quantitative comparisons on different training and test-
ing datasets. “Ours” and “Ours‡” indicate models trained on
HHM50K and the composited training datasets respectively.

the foreground samples, then compositing them onto 100
different non-human background images from COCO [12]
dataset. Our models trained on the composited dataset
and HHM50K are evaluated on two datasets, HHM2K and
AIM-Human.

From Table 2, we observe that the model trained on
the existing composited dataset shows poor performance.
Composited datasets cannot provide rich natural scenarios
for the model to simulate the distribution of real-world im-
ages. This leads to a performance bottleneck of human mat-
ting methods which usually require a large-scale dataset for
higher generalization ability and stability. Our new dataset,
which encompasses various human poses, provides strong
support for training a well-generalized model.
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Figure 1. Left: visual comparisons of our HHM50K with existing human matting training dataset, AIsegment [1]. Right: visual compar-
isons of our HHM2K with existing human matting testing datasets, RWP636 [22] and PhotoMatte85 [10].
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Figure 2. Distribution of image sources (left), human poses (middle), and alpha classes [18] (right) in HHM50K.

2. Low-Resolution Prior Network

In our framework, the low-resolution prior network is ap-
plied to generate spatial sparsity map. Three low-resolution
prior networks are employed in the experiments, i.e., MOD-
Net [9], RVM [11], and our self-trained lightweight human
matting model, which is named LPN for simplicity. We
provide its structure and optimization objectives in the fol-
lowing.
Structure. Given a RGB image, LPN first resizes it to
512 ⇥ 512 and extracts representative features at differ-
ent levels using a backbone network (MobileNetV2 [15] is
adopted). While it is straightforward to directly regress al-
pha mattes through a decoder with skip connections, this is
not advisable as inspired by previous works [9, 13]: with-
out prior knowledge, human matting can be divided into
two sub-tasks, pixel-wise human localization (i.e., segmen-
tation) and estimation of alpha values along boundary (i.e.,
matting). The goals of the two tasks are however not com-
pletely consistent with each other. Specifically, human seg-
mentation needs more global information and thus uses
large receptive field to distinguish regional pixels of human
from the background. On the other hand, human matting
pays more attention to local context and exploits neighbor-
ing information to disentangle foreground color from back-
ground color. Thus we focus the different levels in the de-
coder on different tasks, which is illustrated in Figure 3.

The decoder in the low-resolution branch uses six levels

for feature reconstruction in steps. During training, we en-
force the first three low-resolution levels Pi, i 2 {1, 2, 3} to
predict multi-scale human segmentation and the last three
levels Pi, i 2 {4, 5, 6} to predict boundary matte for aux-
iliary supervision. Then, the final alpha al is fused from
human segmentation P3 and matte P6.
Loss Functions. For LPN, we respectively apply L2 and
L1 loss for human segmentations and mattes. L1 loss and
Pyramid Laplacian loss [8] are jointly utilized to optimize
↵l. For simplicity, the formulation of the aforementioned
losses are denoted as Ls, Lm, L↵, with i indexing level and
j indexing pixel; x and x̂ respectively denote the prediction
and label. The total loss for LPN Ll consists of:

Ls =
3X

i=1

X

j2I

1

2
||Pi,j � P̂i,j ||2, i 2 {1, 2, 3} (1)

Lm =
6X

i=4

X

j2U

||Pi,j � P̂i,j ||1, i 2 {4, 5, 6} (2)

L↵ =
X

j2I

Llap(↵l,j , ↵̂l,j) + ||↵l,j � ↵̂l,j ||1 (3)

3. Evaluation

We conduct evaluation on multiple benchmarks, includ-
ing the natural testing dataset, HHM2K, as well as compos-
ited testing datasets, AIM [20] and VM [10] in the main
paper. Evaluation results on another two natural datasets,
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Figure 3. The structure of our self-trained LPN. Skip connections are ignored.

Method RWP636 [22] PPM100 [9]
MAD MSE Grad Conn MAD MSE Grad Conn

MODNet [9] 32.88 20.48 49.39 30.56 12.44 7.40 8.11 11.00
MODNet [9] + SHM 31.06 19.32 47.27 28.30 11.13 6.68 6.97 10.01

RVM [11] 33.96 21.94 56.33 34.12 15.12 8.62 8.68 14.88
RVM [11] + SHM 31.77 20.45 52.04 32.30 13.81 7.78 7.23 12.10

LPN 29.12 18.33 48.67 29.54 11.00 6.12 7.26 9.70
LPN + SHM 28.09 17.09 46.03 27.49 9.23 5.08 5.68 8.49

Table 3. Quantitative comparisons of our SparseMat with different low-resolution networks on RWP636 [22] and PPM100 [9].

RWP636 [22] and PPM100 [9] are tabulated in Table 3.

More qualitative comparisons on RWP636, PPM100 and
HHM2K are shown in Figure 4–11. Specifically, Figure 4–6
show the qualitative results on RWP636 dataset. Figure 7–
8 show the qualitative results on PPM100 dataset and Fig-
ure 9–11 show the qualitative results on HHM2K dataset.
We zoom in some patches of the results for better view.

Results on Videos. We compare our method with two
trimap-free methods [9] and [11] on high resolution videos.
Qualitative results can be found in the provided video file.
Both [9] and [11] take downsampled image (512) as input,
and produce low-resolution alpha matte which cannot meet
the requirement of ultra high-definition displays. [11] ap-
plies deep guided filter to super-resolve the low-resolution
alpha matte and achieves stable results within solid fore-
ground and background region, but fails on the boundary
region containing thin and complex hairy structures. On the
contrary, our SparseMat directly processes the whole hairy
region in original resolution and generates more precise al-
pha matte along the hairy region.

4. Limitation

The sparsity of images in daily life is usually very high,
but in some special scenarios the pixels to be processed are
not as sparse as expected. In this case, our method may
not gain much efficiency through the sparse high-resolution
module. However, most foreground objects of interest in
matting in daily-life images consist of portrait, animal or
other objects with small transitional regions. Sparsity in-
herent in these images is usually higher than 90% as men-
tioned in the paper. On the other hand, for highly transpar-
ent objects, they may not occupy the entire images. To pro-
vide some quantitative references, the average sparsity of
the mentioned transparent objects in SIMD is higher than
60%; the images with sparsity lower than 60% of SIMD
only make up 7.6%. Thus our method can practically boost
performance for most cases, and rare images with super low
sparsity will not benefit much from our proposed method.
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Figure 4. Qualitative results on RWP636 [22].
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Figure 5. Qualitative results on RWP636 [22].
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Figure 6. Qualitative results on RWP636 [22].
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Figure 7. Qualitative results on PPM100 [9].
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Figure 8. Qualitative results on PPM100 [9].
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Figure 9. Qualitative results on HHM2K.
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Figure 10. Qualitative results on HHM2K.
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Figure 11. Qualitative results on HHM2K.
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