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The contents in this supplementary material are as fol-
lows: A. Implementation details (Sec. A), B. Suitable cat-
egories for sound-to-image (Sec. B), C. Comparison with
the prior arts (Sec. C), D. Additional qualitative analysis and
results (Sec. D), and E. Details of the user study (Sec. E).
We also recommend watching the supplementary video, con-
taining generated images and corresponding input sounds.

A. Implementation Details

Audio pre-processing. The input for the audio encoder is
1004×257-dimensional log-spectrogram, converted from 10
seconds of audio. We first extract up to 10 seconds of audio
from the beginning of each video. If the video clip is shorter
than 10 seconds, we repeat the audio to have the expected in-
put length. Then, we resample the audio waveform at 16kHz
and convert it into frequency domains by constructing a
spectrogram. The spectrogram is passed through a logarithm
function before using it as input.
Evaluation metric. In the main text, we use Fréchet Incep-
tion Distance (FID) [6] and Inception Score (IS) [10] metrics
to evaluate the quality and diversity of the generated images.
To measure both of the metrics, the Inception-V3 [12] model
is required. We fine-tune the Inception-V3 model on VG-
GSound [3] and compute FID and IS with 30k generated
images from the test set.

B. Suitable Categories for Sound-to-Image
Not every category is suitable to be used to infer visual

scenes from sounds. In this section, we analyze which cat-
egories are not only audio-visually well-corresponded but
also suitable for sound-to-image translation.

As described in [11, 15], despite the multi-modality
of video datasets, not every class is audio-visually well-
corresponded, e.g., Kinetics [7] is visual modality biased.
Although several datasets are introduced as audio-visual
datasets, many of the categories of these datasets may not
be audio-visually correlated, such as “civil defense siren”,
“wind noise”, or “reversing beeps”. Moreover, even though

airplane flyby 
ambulance siren 
baby crying 
baby laughter 
car engine idling 
cat purring
chainsawing trees
church bell ringing 
train horning
train whistling
playing bassoon 
playing drum kit 
playing harp

cow lowing 
dog barking 
elk bugling 
fire truck siren
gibbon howling 
hail
lawn mowing
volcano explosion 
stream burbling 
waterfall burbling
people cheering 
people crowd 
people marching

playing timbales 
printer printing 
scuba diving 
sea waves 
sheep bleating 
singing choir 
skiing
slot machine 
snake hissing 
tractor digging
orchestra 
owl hooting

underwater bubbling 
railroad car, train wagon 
train wheels squealing 
baltimore oriole calling 
car engine knocking 
driving snowmobile 
wood thrush calling 
hedge trimmer running
ice cream truck, ice cream van
woodpecker pecking tree
playing harpsichord 
playing snare drum

VGGSound (50 classes)

Figure S1. Selected audio-visual event categories. We select 50
classes among VGGSound [3] for sound-to-image generation.

categories are audio-visually correlated, they may not con-
tain sufficiently dominant semantic signals that can properly
bridge the sound-to-image generation. For example, “people
slurping”, “people eating”, or “people sneezing” are similar
in terms of containing human instances regardless of the
category, while they completely differ in the audio modality.
Such misalignment or weak correspondence in audio-visual
modality may act like outliers and disturb the model learning
to generate an image from the sound. Thus, we conduct an
analysis to identify which categories of audio-visual events
are proper for the sound-to-image generation task.

We analyze the VGGSound [3] dataset to find proper
categories for the sound-to-image generation task, as large-
scale benchmark datasets contain many in-the-wild videos
and categories with very different characteristics. For the
analysis, we first train our model with all the categories
in the VGGSound dataset. Then, we evaluate the R@1 of
the generated images for each category using the CLIP [8]
retrieval metric introduced in the main paper. The categories
above a certain threshold in terms of R@1 performance
naturally reveal plausible image generation quality.

We discover that the categories related to action scenes
are mostly excluded since our work focuses on a single frame
generation task, which is more sensitive to the instance itself
than the action in the scene. In addition, we find that as
we increase the number of categories, the image quality
generated by our model degrades as it brings a high chance
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(a) S2I [5] (b) Ours

Figure S2. Qualitative comparison to S2I [5]. We compare the
generated images between (a) S2I and (b) Ours.

(a) Wan et al. [14] (b) Ours

Figure S3. Qualitative comparison to Wan et al. [14]. We compare
the generated images between (a) Wan et al. and (b) Ours.

of including improper categories.
Given the analysis, we select the categories from VG-

GSound by sorting in R@1 performance and human percep-
tion. We show the top-50 selected categories in Fig. S1 that
are suitable for the sound-to-image generation task. Since
our analyses in the main paper are to see the quality of sound-
to-image generation with much more diverse classes than the
prior arts, we use those selected classes in all the experiments
of the main paper. It contains more diverse categories with
different levels of audio-visual correspondences compared
to the existing methods that come with a small number of
categories in which images and sounds are closely correlated.

Figure S4. t-SNE visualization [13] of learned features. We sam-
ple 25 classes from VGGSound and visualize the learned audio
features of the test set. For visualization purposes only, we color the
features in terms of class labels, and no labels are used for training.

Discovering more proper videos and filtering outliers to en-
hance the sound-to-image generation task is an interesting
research direction and needs further investigation.

C. Comparison with the Prior Arts
We show qualitative comparison with our model and prior

arts, Sound-to-Imagination (S2I) [5] and Wan et al. [14].
We obtain the generated images of the prior work directly
from their published results. Thus, the input audio for each
generated image and the training dataset for each model is
different. However, the purpose of this comparison is only to
show how well our model and existing methods can generate
images for given categories. The image size varies depending
on the models; our model generates 128×128, S2I generates
96× 96, and Wan et al. generate 64× 64 pixels images.

The comparison results of the overlapping sound cate-
gories for S2I and Wan et al. are shown in Fig.S2 and S3,
respectively. While S2I preserves the coarse shapes of dogs
or babies and contains scenes that are relevant to the input
sound, the images are too blurry to clarify detailed depictions.
Wan et al. also produces the coarse shape of the plane but
fails to produce informative images on other categories. In
contrast, our model consistently generates visually plausible
and detailed images aligned with the given sound category.

D. Additional Qualitative Analysis and Results

t-SNE visualization of audio features. We show t-SNE vi-
sualization [13] of the learned features of our audio encoder
in Fig. S4. As shown, our audio encoder segregates input au-
dios into clusters correlated with their audio-visually related
classes. For example, three water-related clusters, which in-
clude similar visual scenes and also the sounds, are located

2
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Figure S5. Qualitative results of sampled categories in VGGSound [3] test set. Sound2Scene can generate visually plausible images from
diverse in-the-wild sounds. Note that our method does not use any class information during training and inference.

Wind
(Top) Bird / (Bottom) Dog

Figure S6. Generated images by mixing multiple audios with
volume changes in the waveform space.

closely (A in Fig. S4). In addition, drum-related videos are
also similar in terms of audio-visual information and are
located closely (B in Fig. S4). Although our model mostly
embeds the input audios to audio-visually related clusters,
several clusters are closely located in terms of visual in-
formation. This is expected as no class-level supervision is
provided, but only the visual features are used. For example,
the sound of “singing choir”, “people crowd”, and “people
marching” are different from each other and clustered sep-
arately, but they are closely located in terms of their visual
similarity (C in Fig. S4), and the similar results are shown
with “skiing” and “driving snowmobile” (D in Fig. S4).
Additional generated images from different sounds. Ad-
ditional qualitative results for generating images from single
waveform are shown in Fig. S5. Each image is generated

Given Image

Figure S7. Image editing by volume changes in the latent space.
We move the extracted visual feature in the direction of the volume
difference between the two audio features.

from different sounds without providing any class informa-
tion to the model. As shown, our model can handle different
categories of sounds, such as from animals, and vehicles, to
diverse sceneries, and generate plausible results conditioned
on the given sound. Generated images generally preserve the
semantics of the scenes properly, such as the “Chainsawing”
action appearing in the middle of the forest scene or “Lawn
Mowing” images on grass instead of asphalt roads.

We further show the generated images by mixing multiple
audios with volume changes in Fig. S6. For example, by
decreasing the volume of the “Dog” while increasing the
“Wind” sound, a close-up shot of the dog starts disappearing
and a wide-shot in the snowy environment (windy) with a
smaller dog appears gradually.

3
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Underwater

Fire Truck

Hail

Tractor

Top-1
Retrieved

Image

Marching Icecream
Truck

Top-1
Retrieved

Image

Top-1
Retrieved

Image

Top-1
Retrieved

Image

Top-1
Retrieved

Image

Top-1
Retrieved

Image

Figure S8. Generated images conditioned on sound and image. We simply interpolate between a visual feature and an audio feature in the
joint latent embedding space. This interpolated feature is then fed to the image generator to generate a novel image. The first row per sample
shows the generated images, while the row below contains the images from the ImageNet [4] training set, which are retrieved by measuring
cosine similarity in the latent space of the image encoder, fV (·).

Additional generated images from latent manipulations.
As introduced in the main text, Sound2Scene provides latent
space manipulations to generate images conditioned on both
audio-visual signals. For the first approach, we can edit the
given image by the given paired audio. We extract a visual
feature and the noise vector by GAN inversion [1, 9] and
move the visual feature toward the volume change direction
of the audio features. Then, the manipulated visual feature
and the noise vector are fed to the image generator, G(·), to
generate an edited image. As shown in Fig. S7, the explosion
of the given image gets smaller while we move the visual
feature toward the volume-decreasing direction while getting
bigger by moving toward the volume increase direction.

Furthermore, as a second approach, we can simply inter-

polate between the audio and visual features and generate a
novel image by conditioning on both audio-visual signals,
as shown in Fig. S8. We can stylize the building to be on
a cloudy day or underwater, insert diverse vehicles on the
road, or even insert people in the snowy fields. Moreover,
we compare the generated images with the closest samples
in ImageNet [4]. For example, we see that for generated im-
ages conditioned on the building and “Underwater” sound,
no buildings in the closest images are underwater but with
the blue sky; or we observe that the closest images rarely
contain many people in the scene for the generated images
conditioned on a snowy mountain and “Marching” sound.
These examples show that our model generates new unique
images rather than memorizing the training set.
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(a) Comparison to ICGAN [2] (b) Validation of proper image generation

Figure S9. Examples of the user study. We conduct the user study by comparing with ICGAN in (a) and validating the proper image
generation in (b). The images provided in the user study are randomly ordered.

E. Details of the User Study
We conduct a user study to analyze the performance of

our method from the human perception perspective. The user
study questionnaire interface is shown in Fig. S9. Users listen
to the given audio, see the generated images and make a se-
lection without any time limitation. This user study contains
two experiments with 20 questions in each, as described in

the main paper. The first experiment is about the comparison
to ICGAN [2]. Audio and five images are given to the partic-
ipants as Fig. S9 (a). Among five images, two are generated
by our model and ICGAN, respectively, from the given sound
or its paired image. The rest are generated images from ran-
dom categories of the sounds. The users are asked to pick
all the images that illustrate the given sound. As shown in
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Ours ICGAN Uncorrelated images Correct Uncorrelated images

(a) Comparison to ICGAN [2] (b) Validation of proper image generation

Figure S10. Samples of human evaluation results. Each row denotes each question, and the corresponding audio is described with text. We
compare the generated images with ICGAN in (a). Conditioned on the given audio-image pair (audio for ours and image for ICGAN), the
two left images are generated by our model and ICGAN, respectively. Three remaining images are generated by our model but conditioned
on uncorrelated category audios. Each percentage in the colored box states the recall probability of the generated image. We validate the
proper image generation of our method in (b). All images are generated by our model, but only the first column is conditioned on the given
sound. Each percentage in the colored box states the selection ratio of the participants.

Fig. S10 (a), our generated images are more preferred to
ICGAN. However, there are interesting results showing that
the user study is highly subjective. For example, in the bot-
tom row, even though only the image generated from our
model can be considered as a snowmobile, users tend to
pick the option that is more familiar than the snowmobile, a
car-looking object, as the given audio is engine-like.

In the second experiment, we validate how properly our
model generates images for given audio. Audio and four
images are provided to the participants. Our model gener-
ates all four images, but only one image is from the given
sound. Participants are asked to choose one image that best
illustrates the given sound or check the {None of them} as
in Fig. S9 (b). The selection ratio in Fig. S10 (b) clearly
shows that our model generates highly-correlated images to
the given sounds from the human perspective. We observe
several interesting user subjectivities for making a selection.
In the last row of Fig. S10 (b), among four images, even
though the generated image in the first column seems to be
more related to the given sound (looks like a human is in the
position of using a chainsaw), users select the second image
containing a vehicle in the scene. We assume that for people
who are not experts in the audio-visual domain, it may be
challenging to differentiate similar sounds (engine-like), e.g.,
chainsaw, tractor, and truck sounds. Nonetheless, the over-
all user studies support that our model generates visually
plausible images corresponding to the given sound.
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