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A. Training Loss in Detail
In the manuscript, we have briefly introduced the en-

coder loss and decoder loss as

Lenc = LVW
enc + LVS

enc + LVP
enc (1)

Ldec = LP
dec + LS

dec + LW
union + LW

subset︸ ︷︷ ︸
weakly-supervised LW

dec

(2)

Here, we provide more details about the employed encoder
and decoder losses.

A.1. Encoder Loss

Our HSCNet encoder is trained by minimizing three se-
mantic alignment losses LVW

enc , LVS
enc, and LVP

enc based on
the video-word semantic similarity matrix AVW , video-
sentence semantic similarity matrix AVS , and video-
paragraph semantic similarity matrix AVP , respectively.

The word-level semantic alignment loss LVW
enc is formu-

lated as:
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where V represents a set of indices for frames related to the
words in the paragraph and W+

j represents the indices of
relevant words corresponding to the j-th frame. W repre-
sents the set of indices of words in the paragraph and V+

i

represents the indices of relevant frames corresponding to
the i-th word. Ȧ

VW
and Ä

VW
are obtained by performing

column-wise and row-wise softmax on AVW , respectively.
Similarly, the sentence-level semantic alignment loss LVS

enc

is formulated as:

LVS
enc = − 1

|V|
∑
j∈V

log

∑
i∈S+j

Ȧ
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where V represents the set of indices for frames related to
the sentences and S+j represents the indices of relevant sen-
tences corresponding to the j-th frame. S represents the
set of indices of sentences in the paragraph and V+

i rep-
resents the indices of relevant frames corresponding to the
i-th sentence. Ȧ

VS
and Ä

VS
are obtained by performing

column-wise and row-wise softmax on AVS , respectively.
The paragraph-level semantic alignment loss LVP

enc is de-
fined as:

LVP
enc = −log

∑
j∈Vp

Ä
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where Vp represents the indices of frames corresponding to

the holistic paragraph. Ä
VP

is obtained by performing row-
wise softmax on AVP . A frame will be associated with the
paragraph if it falls within the time interval corresponding
to any one of the sentences in the paragraph.

A.2. Decoder Loss

The paragraph-level decoder loss LP
dec, sentence-level

decoder loss LS
dec share the similar formulation consisting

of a L1 distance term and a GIoU term, which has been
discussed in the manuscript. For the word-level decoding
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loss, it is defined as a union loss LW
union and a subset loss

LW
subset computed between the word-level predictions T̃

W

and sentence-level ground-truth T in a weakly-supervised
manner. Specifically, we first obtain the temporal union

of word-wise timestamps within each sentence as T̃
U

, then
LW
union can be defined as:

LW
union =

1
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)
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where ∥·∥1 indicates L1 distance, NS is the number of sen-
tences. Ts,i and Te,i denote the starting and ending times-
tamps corresponding to the i-th sentence, respectively. The
subset loss LW

subset is defined as:
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where NW
i indicates the number of words in the i-th sen-

tence. LI
i,j indicates the temporal length of intersection be-

tween the prediction of the j-th word in the i-th sentence
and the ground-truth of the i-th sentence. LW

i,j indicates the
length of the prediction of the j-th word in the i-th sentence.

B. Visualization Results of More Examples
In this section, we further visualize the grounding results

of our HSCNet on some representative cases to demonstrate
the effectiveness of our method.

Firstly, in the case presented in Figure S1, the input video
has a long duration up to 11 minutes and the paragraph
is composed of 10 sentences referring to different events.
Overall, we can see that most of the sentences are success-
fully grounded by temporal boundaries around the ground-
truth. Note that for the third sentence in this paragraph, its
relevant event only occupies less than 5% of the total video
duration, which makes it extremely difficult to be correctly
grounded. However, our model gives a considerably precise
prediction that are well overlapped with the target moment,
demonstrating the effectiveness of our method.

In the second case presented in Figure S2, each sentence
in the paragraph query describes a complex activity com-
posed of multiple actions. These complex activities require
the model to fairly well understand the fine-grained corre-
spondence between the video and paragraph so that precise
temporal grounding results can be obtained. Once more,
our HSCNet gives a series of temporal boundaries that rea-
sonably locate around the ground-truth temporal intervals
of different events. It’s worth noting that the fifth sentence
in this paragraph is favorably grounded by our HSCNet, al-
though it describes a more complex activity consisting of
three consecutive actions. Additionally, we observe that our

model performs not so well in some situations. For instance,
the predicted starting time of the seventh event in Figure
S2 is earlier than the ground-truth starting time to a certain
extent. The reason might be that the model cannot reason
well from the description “finished cutting the peels off the
pineapple” to figure out when the man started to peel the
pineapple for the last time in the video.

C. Hyperparameter Experiments
Number of encoder layers. In the hierarchical encoder, the
number of word-level, sentence-level and paragraph-level
layers are set as C1, C2 and C3, respectively. To obtain
the best configuration for encoder depth, we first defined
C1=C2=C3=c to reduce the huge search space for simplic-
ity. Then we searched different c to observe its influence
on model performance. As shown in Table S1, model per-
formance saturates at a small number of encoder layers (i.e.,
c=1) on ActivityNet-Captions while the model obtains more
gains with deeper encoder network and reaches its sweet
point at c=3 on TACoS. This may be because the video
duration and paragraph length on TACoS are both longer
than those on ActivityNet-Captions, and the more complex
structure of video-text relations requires more iterations of
multi-model interactions to capture its characteristics.

Table S1. Ablation studies on encoder depth c in mIoU metric.

ActivityNet-Captions TACoS
c=1 c=2 c=3 c=4 c=1 c=2 c=3 c=4

59.71 59.63 59.38 59.21 37.90 39.39 40.61 39.87

Number of video clips. As mentioned in the manuscript,
we sample a fixed number of short clips from the video
at equal intervals. Here we also provide experimen-
tal results on the impact of the number of video clips
NV . Specifically, we searched NV within the range of
{128, 256, 512, 768} across all the datasets. As shown in
Table S2, the best choice of NV turns out to be 256 and
512 for ActivityNet-Captions and TACoS, respectively. For
ActivityNet-Captions, a smaller number of video clips is
more suitable because of its relatively short video length.
For TACoS, we observed that a small number of video clips
hurts the performance to some extent, which is largely due
to the long video length in its data distribution.

Table S2. Ablation studies on number of clips NV in mIoU metric.

ActivityNet-Captions TACoS
128 256 512 768 128 256 512 768

59.26 59.71 59.27 59.02 36.37 38.51 40.61 40.17

Selection of temperature parameter. We investigate the
impact of different choices of temperature by searching
τ ℓ in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} on TACoS dataset, as
shown in Table S3. It could be seen that model performance



① The man takes the beans from the refrigerator. ② The man washes the beans. ③ The man chops the ends off the beans.
④ The man slices the broad beans. ⑤ The man takes out a pan and adds oil to the pan. ⑥ The man adds the broad beans to
the pan. ⑦ The man straightens up while he waits for the beans to cook. ⑧ The man seasons the broad beans. ⑨ The man
continues to stir the beans as they cook. ⑩ The man places the beans onto a plate.
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Figure S1. Grounding results of multiple events in a typically long video.

① He walked to the drawer, took out the cutting board and knife. ② He walked to the pantry and took out a pineapple. ③ He cut the
bottom of the pineapple, walked to the cabinet and took out a plate. ④ He sliced the whole pineapple, and then threw away the ends. ⑤
He cut the peels of the pineapples, sliced them, and placed them on the plate. ⑥ He went to the cabinet, took out a bowl, and place half of
pineapple from the plate into the bowl. ⑦ He finished cutting the peels off the pineapple, sliced them, and placed them in the bowl.
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Figure S2. Grounding results of multiple complex events, each of which contains multiple actions.

is quite stable within a reasonable range of temperature, i.e.,
from 0.05 to 0.2. However, we also found the model perfor-
mance start to degrade with the temperature being too high,
which may attribute to the over-smoothing issue. We adopt
τ ℓ = 0.2 in all settings of our method because it performs
relatively better compared with other choices.

Table S3. Ablation studies on temperature τ ℓ in mIoU metric.

τ ℓ 0.05 0.1 0.15 0.2 0.25 0.3

mIoU 40.31 40.21 40.39 40.61 39.61 38.89
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